1
|
Osti NC, Jalarvo N, Mamontov E. Backscattering silicon spectrometer (BASIS): sixteen years in advanced materials characterization. MATERIALS HORIZONS 2024; 11:4535-4572. [PMID: 39162617 DOI: 10.1039/d4mh00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Quasielastic neutron scattering (QENS) is an experimental technique that can measure parameters of mobility, such as diffusion jump rate and jump length, as well as localized relaxations of chemical species (molecules, ions, and segments) at atomic and nanometer length scales. Due to the high penetrative power of neutrons and their sensitivity to neutron scattering cross-section of chemical species, QENS can effectively probe mobility inside most bulk materials. This review focuses on QENS experiments performed using a neutron backscattering silicon spectrometer (BASIS) to explore the dynamics in various materials and understand their structure-property relationship. BASIS is a time-of-flight near-backscattering inverted geometry spectrometer with very high energy resolution (approximately 0.0035 meV of full width at half maximum), allowing measurements of dynamics on nano to picosecond timescales. The science areas studied with BASIS are diverse, with a focus on soft matter topics, including traditional biological and polymer science experiments, as well as measurements of fluids ranging from simple hydrocarbons and aqueous solutions to relatively complex room-temperature ionic liquids and deep-eutectic solvents, either in the bulk state or confined. Additionally, hydrogen confined in various materials is routinely measured on BASIS. Other topics successfully investigated at BASIS include quantum fluids, spin glasses, and magnetism. BASIS has been in the user program since 2007 at the Spallation Neutron Source of the Oak Ridge National Laboratory, an Office of Science User Facility supported by the U.S. Department of Energy. Over the past sixteen years, BASIS has contributed to various scientific disciplines, exploring the structure and dynamics of many chemical species and their fabrication for practical applications. A comprehensive review of BASIS contributions and capabilities would be an asset to the materials science community, providing insights into employing the neutron backscattering technique for advanced materials characterization.
Collapse
Affiliation(s)
- Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Niina Jalarvo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Liu D, Xiong Z, Wang P, Liang Q, Zhu H, Liu JZ, Forsyth M, Li D. Ion-Specific Nanoconfinement Effect in Multilayered Graphene Membranes: A Combined Nuclear Magnetic Resonance and Computational Study. NANO LETTERS 2023. [PMID: 37315026 DOI: 10.1021/acs.nanolett.3c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ion adsorption within nanopores is involved in numerous applications. However, a comprehensive understanding of the fundamental relationship between in-pore ion concentration and pore size, particularly in the sub-2 nm range, is scarce. This study investigates the ion-species-dependent concentration in multilayered graphene membranes (MGMs) with tunable nanoslit sizes (0.5-1.6 nm) using nuclear magnetic resonance and computational simulations. For Na+-based electrolytes in MGMs, the concentration of anions in graphene nanoslits increases in correlation with their chaotropic properties. As the nanoslit size decreases, the concentration of chaotropic ion (BF4-) increases, whereas the concentration of kosmotropic ions (Cit3-, PO43-) and other ions (Ac-, F-) decreases or changes slightly. Notably, anions remain more concentrated than counter Na+ ions, leading to electroneutrality breakdown and unipolar anion packing in MGMs. A continuum modeling approach, integrating molecular dynamic simulation with the Poisson-Boltzmann model, elucidates these observations by considering water-mediated ion-graphene non-electrostatic interactions and charge screening from graphene walls.
Collapse
Affiliation(s)
- Diyan Liu
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Zhiyuan Xiong
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Peiyao Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Haijin Zhu
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Guangdong 515063, P. R. China
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Sahu S, Schwindt NS, Coscia BJ, Shirts MR. Obtaining and Characterizing Stable Bicontinuous Cubic Morphologies and Their Nanochannels in Lyotropic Liquid Crystal Membranes. J Phys Chem B 2022; 126:10098-10110. [PMID: 36417348 DOI: 10.1021/acs.jpcb.2c06119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Amphiphilic monomers in polar solvents can self-assemble into lyotropic liquid crystal (LLC) bicontinuous cubic structures under the right composition and temperature conditions. After cross-linking, the resulting polymer membranes with three-dimensional (3D) continuous uniform channels are excellent candidates for filtration applications. Designing such membranes with the desired physical and chemical properties requires molecular-level understanding of the structure, which can be obtained through molecular modeling. However, building molecular models of bicontinuous cubic structures is challenging due to their narrow regime of stability and the difficulty of self-assembly of large unit cells in molecular simulations. We developed a protocol for building stable bicontinuous cubic unit cells involving both parameterization and assembly of the components. We validate the theoretical structure against experimental results for one such LLC monomer and provide insight into the structure missing in experimental data, as well as demonstrate the qualitative nature of water and solute transport through these membranes.
Collapse
Affiliation(s)
- Subin Sahu
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Nathanael S Schwindt
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Benjamin J Coscia
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Michael R Shirts
- Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States
| |
Collapse
|
4
|
Jackson GL, Kim SA, Jayaraman A, Diallo SO, Mahanthappa MK. Consequences of Convex Nanopore Chemistry on Confined Water Dynamics. J Phys Chem B 2020; 124:1495-1508. [PMID: 32065528 PMCID: PMC7122394 DOI: 10.1021/acs.jpcb.9b10176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fundamental understanding of confined water is crucial for developing selective ion transport and water purification membranes, yet the roles of nanopore geometry and functionality on confined water dynamics remain unresolved. We report the synthesis of perdeuterated ionic alkylsulfonate amphiphiles and their water-induced self-assembly into lyotropic liquid crystal (LLC) mesophases with well-defined, convex, sulfonate-lined nanopores. Quasielastic neutron scattering (QENS) measurements demonstrate that the water self-diffusion coefficients within these sulfonate-lined convex nanopores depend on the hydration level and amphiphile counterion identity (H+, K+, NMe4+). The consistency of the observed counterion-dependent water dynamics trends with those of carboxylate LLCs is rationalized on the basis of similarities in the counterion spatial distributions in the water-filled channels, which we deduce from electron density maps derived from small-angle X-ray scattering (SAXS) analyses. These findings indicate that water diffusion is systematically faster in sulfonate-lined nanopores as compared to carboxylate-lined pores due to weaker water interactions with the softer and more hydrophobic-SO3- functionalities. These molecular-level insights into the relationships between convex pore wall chemical functionalities, hydrated counterions, and confined water diffusion may inform future development of new nanoporous media.
Collapse
Affiliation(s)
- Grayson L. Jackson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706
| | - Sung A Kim
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave, S.E., Minneapolis, MN 55455
| | - Ashish Jayaraman
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave, S.E., Minneapolis, MN 55455
| | - Souleymane O. Diallo
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Mahesh K. Mahanthappa
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave, S.E., Minneapolis, MN 55455
| |
Collapse
|