1
|
Tarn MD, Sikora SNF, Porter GCE, Shim JU, Murray BJ. Homogeneous Freezing of Water Using Microfluidics. MICROMACHINES 2021; 12:223. [PMID: 33672200 PMCID: PMC7926757 DOI: 10.3390/mi12020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023]
Abstract
The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of -35.1 to -36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice-supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m-2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Sebastien N. F. Sikora
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| |
Collapse
|
2
|
Halukeerthi SO, Shephard JJ, Talewar SK, Evans JSO, Rosu-Finsen A, Salzmann CG. Amorphous Mixtures of Ice and C 60 Fullerene. J Phys Chem A 2020; 124:5015-5022. [DOI: 10.1021/acs.jpca.0c03439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siriney O. Halukeerthi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Jacob J. Shephard
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Sukhpreet K. Talewar
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - John S. O. Evans
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Alexander Rosu-Finsen
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Christoph G. Salzmann
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
3
|
Talewar SK, Halukeerthi SO, Riedlaicher R, Shephard JJ, Clout AE, Rosu-Finsen A, Williams GR, Langhoff A, Johannsmann D, Salzmann CG. Gaseous "nanoprobes" for detecting gas-trapping environments in macroscopic films of vapor-deposited amorphous ice. J Chem Phys 2019; 151:134505. [PMID: 31594355 DOI: 10.1063/1.5113505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vapor-deposited amorphous ice, traditionally called amorphous solid water (ASW), is one of the most abundant materials in the universe and a prototypical material for studying physical vapor-deposition processes. Its complex nature arises from a strong tendency to form porous structures combined with complicated glass transition, relaxation, and desorption behavior. To gain further insights into the various gas-trapping environments that exist in ASW and hence its morphology, films in the 25-100 μm thickness range were codeposited with small amounts of gaseous "nanoprobes" including argon, methane, helium, and carbon dioxide. Upon heating in the 95-185 K temperature range, three distinct desorption processes are observed which we attribute to the gas desorption out of open cracks above 100 K, from internal voids that collapse due to the glass transition at ∼125 K and finally from fully matrix-isolated gas induced by the irreversible crystallization to stacking disordered ice (ice Isd) at ∼155 K. Nanoscale films of ASW have only displayed the latter desorption process which means that the first two desorption processes arise from the macroscopic dimensions of our ASW films. Baffling the flow of water vapor toward the deposition plate greatly reduces the first desorption feature, and hence the formation of cracks, but it significantly increases the amount of matrix-isolated gas. The complex nature in which ASW can trap gaseous species is thought to be relevant for a range of cosmological processes.
Collapse
Affiliation(s)
- Sukhpreet K Talewar
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Siriney O Halukeerthi
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Regina Riedlaicher
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Jacob J Shephard
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Alexander E Clout
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Alexander Rosu-Finsen
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Arne Langhoff
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, Clausthal-Zellerfeld, Germany
| | - Diethelm Johannsmann
- Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, Clausthal-Zellerfeld, Germany
| | - Christoph G Salzmann
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
4
|
Nachbar M, Duft D, Leisner T. The vapor pressure of liquid and solid water phases at conditions relevant to the atmosphere. J Chem Phys 2019. [DOI: 10.1063/1.5100364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Mario Nachbar
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, P.O. Box 2640, Karlsruhe, Germany
| | - Denis Duft
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, P.O. Box 2640, Karlsruhe, Germany
| | - Thomas Leisner
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, P.O. Box 2640, Karlsruhe, Germany
- Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|