1
|
Goswami K. Stochastic resetting in a nonequilibrium environment. Phys Rev E 2025; 111:014150. [PMID: 39972878 DOI: 10.1103/physreve.111.014150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025]
Abstract
This study examines the dynamics of a tracer particle diffusing in a nonequilibrium medium under stochastic resetting. The nonequilibrium state is induced by harmonic coupling between the tracer and bath particles, generating memory effects with an exponential decay in time. We explore the tracer's behavior under a Poissonian resetting protocol, where resetting does not disturb the bath environment, with a focus on key dynamical behavior and first-passage properties, both in the presence and absence of an external force. The interplay between coupling strength and diffusivity of bath particles significantly impacts both the tracer's relaxation dynamics and search time, with external forces further modulating these effects. Our analysis identifies distinct hot and cold bath particles based on their diffusivities, revealing that coupling to a hot particle facilitates the searching process, whereas coupling to a cold particle hinders it. Using a combination of numerical simulations and analytical methods, this study provides a comprehensive framework for understanding resetting mechanisms in non-Markovian systems, with potential applications to complex environments such as active and viscoelastic media, where memory-driven dynamics and nonequilibrium interactions are significant.
Collapse
Affiliation(s)
- Koushik Goswami
- National Center for Theoretical Sciences, Physics Division, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
2
|
Jangid P, Chaudhury S. Transition Path Dynamics of Non-Markovian Systems across a Rough Potential Barrier. J Phys Chem A 2024; 128:10041-10052. [PMID: 39528308 DOI: 10.1021/acs.jpca.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Transition paths refer to rare events in physics, chemistry, and biology where the molecules cross barriers separating stable molecular conformations. The conventional analysis of the transition path times employs a diffusive and memoryless transition over a smooth potential barrier. However, it is widely acknowledged that the free energy profile between two minima in biomolecular processes is inherently not smooth. In this article, we discuss a theoretical model with a parabolic rough potential barrier and obtain analytical results of the transition path distribution and mean transition path times by incorporating absorbing boundary conditions across the boundaries under the driving of Gaussian white noise. Further, the influence of anomalous dynamics in rough potential driven by a power-law memory kernel is analyzed by deriving a time-dependent scaled diffusion coefficient that coarse-grains the effects of roughness, and the system's dynamics is reduced to a scaled diffusion on a smooth potential. Our theoretical results are tested and validated against numerical simulations. The findings of our study show the influence of the boundary conditions, barrier height, barrier roughness, and memory effect on the transition path time distributions in a rough potential, and the validity of the scaling diffusion coefficient has been discussed.
Collapse
Affiliation(s)
- Pankaj Jangid
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
3
|
Barbier-Chebbah A, Bénichou O, Voituriez R, Guérin T. Long-term memory induced correction to Arrhenius law. Nat Commun 2024; 15:7408. [PMID: 39198409 PMCID: PMC11358423 DOI: 10.1038/s41467-024-50938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The Kramers escape problem is a paradigmatic model for the kinetics of rare events, which are usually characterized by Arrhenius law. So far, analytical approaches have failed to capture the kinetics of rare events in the important case of non-Markovian processes with long-term memory, as occurs in the context of reactions involving proteins, long polymers, or strongly viscoelastic fluids. Here, based on a minimal model of non-Markovian Gaussian process with long-term memory, we determine quantitatively the mean FPT to a rare configuration and provide its asymptotics in the limit of a large energy barrier E. Our analysis unveils a correction to Arrhenius law, induced by long-term memory, which we determine analytically. This correction, which we show can be quantitatively significant, takes the form of a second effective energy barrierE ' < E and captures the dependence of rare event kinetics on initial conditions, which is a hallmark of long-term memory. Altogether, our results quantify the impact of long-term memory on rare event kinetics, beyond Arrhenius law.
Collapse
Affiliation(s)
- A Barbier-Chebbah
- Decision and Bayesian Computation, USR 3756 (C3BI/DBC) and Neuroscience Department CNRS UMR 3751, Institut Pasteur, Université de Paris, CNRS, 75015, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/UPMC, 4 Place Jussieu, 75005, Paris, France
| | - O Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/UPMC, 4 Place Jussieu, 75005, Paris, France.
| | - R Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS/UPMC, 4 Place Jussieu, 75005, Paris, France
- Laboratoire Jean Perrin, CNRS/UPMC, 4 Place Jussieu, 75005, Paris, France
| | - T Guérin
- Laboratoire Ondes et Matière d'Aquitaine, CNRS/University of Bordeaux, F-33400, Talence, France
| |
Collapse
|
4
|
Song K, Makarov DE, Vouga E. The effect of time resolution on the observed first passage times in diffusive dynamics. J Chem Phys 2023; 158:111101. [PMID: 36948823 DOI: 10.1063/5.0142166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Single-molecule and single-particle tracking experiments are typically unable to resolve fine details of thermal motion at short timescales where trajectories are continuous. We show that, when a diffusive trajectory xt is sampled at finite time intervals δt, the resulting error in measuring the first passage time to a given domain can exceed the time resolution of the measurement by more than an order of magnitude. Such surprisingly large errors originate from the fact that the trajectory may enter and exit the domain while being unobserved, thereby lengthening the apparent first passage time by an amount that is larger than δt. Such systematic errors are particularly important in single-molecule studies of barrier crossing dynamics. We show that the correct first passage times, as well as other properties of the trajectories such as splitting probabilities, can be recovered via a stochastic algorithm that reintroduces unobserved first passage events probabilistically.
Collapse
Affiliation(s)
- Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
5
|
Dutta R, Pollak E. Microscopic origin of diffusive dynamics in the context of transition path time distributions for protein folding and unfolding. Phys Chem Chem Phys 2022; 24:25373-25382. [PMID: 36239220 DOI: 10.1039/d2cp03158b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Experimentally measured transition path time distributions are usually analyzed theoretically in terms of a diffusion equation over a free energy barrier. It is though well understood that the free energy profile separating the folded and unfolded states of a protein is characterized as a transition through many stable micro-states which exist between the folded and unfolded states. Why is it then justified to model the transition path dynamics in terms of a diffusion equation, namely the Smoluchowski equation (SE)? In principle, van Kampen has shown that a nearest neighbor Markov chain of thermal jumps between neighboring microstates will lead in a continuum limit to the SE, such that the friction coefficient is proportional to the mean residence time in each micro-state. However, the practical question of how many microstates are needed to justify modeling the transition path dynamics in terms of an SE has not been addressed. This is a central topic of this paper where we compare numerical results for transition paths based on the diffusion equation on the one hand and the nearest neighbor Markov jump model on the other. Comparison of the transition path time distributions shows that one needs at least a few dozen microstates to obtain reasonable agreement between the two approaches. Using the Markov nearest neighbor model one also obtains good agreement with the experimentally measured transition path time distributions for a DNA hairpin and PrP protein. As found previously when using the diffusion equation, the Markov chain model used here also reproduces the experimentally measured long time tail and confirms that the transition path barrier height is ∼3kBT. This study indicates that in the future, when attempting to model experimentally measured transition path time distributions, one should perhaps prefer a nearest neighbor Markov model which is well defined also for rough energy landscapes. Such studies can also shed light on the minimal number of microstates needed to unravel the experimental data.
Collapse
Affiliation(s)
- Rajesh Dutta
- Chemical and Biological Physics Department, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Eli Pollak
- Chemical and Biological Physics Department, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
6
|
Ayaz C, Scalfi L, Dalton BA, Netz RR. Generalized Langevin equation with a nonlinear potential of mean force and nonlinear memory friction from a hybrid projection scheme. Phys Rev E 2022; 105:054138. [PMID: 35706310 DOI: 10.1103/physreve.105.054138] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
We introduce a hybrid projection scheme that combines linear Mori projection and conditional Zwanzig projection techniques and use it to derive a generalized Langevin equation (GLE) for a general interacting many-body system. The resulting GLE includes (i) explicitly the potential of mean force (PMF) that describes the equilibrium distribution of the system in the chosen space of reaction coordinates, (ii) a random force term that explicitly depends on the initial state of the system, and (iii) a memory friction contribution that splits into two parts: a part that is linear in the past reaction-coordinate velocity and a part that is in general nonlinear in the past reaction coordinates but does not depend on velocities. Our hybrid scheme thus combines all desirable properties of the Zwanzig and Mori projection schemes. The nonlinear memory friction contribution is shown to be related to correlations between the reaction-coordinate velocity and the random force. We present a numerical method to compute all parameters of our GLE, in particular the nonlinear memory friction function and the random force distribution, from a trajectory in reaction coordinate space. We apply our method on the dihedral-angle dynamics of a butane molecule in water obtained from atomistic molecular dynamics simulations. For this example, we demonstrate that nonlinear memory friction is present and that the random force exhibits significant non-Gaussian corrections. We also present the derivation of the GLE for multidimensional reaction coordinates that are general functions of all positions in the phase-space of the underlying many-body system; this corresponds to a systematic coarse-graining procedure that preserves not only the correct equilibrium behavior but also the correct dynamics of the coarse-grained system.
Collapse
Affiliation(s)
- Cihan Ayaz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Laura Scalfi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Benjamin A Dalton
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
7
|
Sharma S, Singh V, Biswas P. Analysis of the Passage Times for Unfolding/Folding of the Adenine Riboswitch Aptamer. ACS PHYSICAL CHEMISTRY AU 2022; 2:353-363. [PMID: 36855421 PMCID: PMC9955275 DOI: 10.1021/acsphyschemau.1c00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational transitions of the adenosine deaminase A-riboswitch aptamer both with and without ligand binding are investigated within the tenets of the generalized Langevin equation in a complex viscoelastic cellular environment. Steered molecular dynamics (SMD) simulations are performed to evaluate and compare the results of the first passage times (FPTs) with those obtained from the theory for the unfold and fold transitions of the aptamer. The results of the distribution of Kramers's FPT reveal that the unfold-fold transitions are faster and hence more probable as compared to the fold-unfold transitions of the riboswitch aptamer for both ligand-bound and -unbound states. The transition path time is lower than Kramers's FPT for the riboswitch aptamer as the transition path times for the unfold-fold transition of both without and with ligand binding are insensitive to the details of the exact mechanism of the transition events. However, Kramers's FPTs show varied distributions which correspond to different transition pathways, unlike the transition path times. The mean FPT increases with an increase in the complexity of the cellular environment. The results of Kramers's FPT, transition path time distribution, and mean FPT obtained from our calculations qualitatively match with those obtained from the SMD simulations. Analytically derived values of the mean transition path time show good quantitative agreement with those estimated from the single-molecule force spectroscopy experiments for higher barrier heights.
Collapse
|
8
|
Ginot F, Caspers J, Krüger M, Bechinger C. Barrier Crossing in a Viscoelastic Bath. PHYSICAL REVIEW LETTERS 2022; 128:028001. [PMID: 35089774 DOI: 10.1103/physrevlett.128.028001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
We investigate the hopping dynamics of a colloidal particle across a potential barrier and within a viscoelastic, i.e., non-Markovian, bath and report two clearly separated timescales in the corresponding waiting time distributions. While the longer timescale exponentially depends on the barrier height, the shorter one is similar to the relaxation time of the fluid. This short timescale is a signature of the storage and release of elastic energy inside the bath that strongly increases the hopping rate. Our results are in excellent agreement with numerical simulations of a simple Maxwell model.
Collapse
Affiliation(s)
- Félix Ginot
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Juliana Caspers
- Institute for Theoretical Physics, Georg-August Universität Göttingen, 37073 Göttingen, Germany
| | - Matthias Krüger
- Institute for Theoretical Physics, Georg-August Universität Göttingen, 37073 Göttingen, Germany
| | | |
Collapse
|
9
|
External potential modifies memory of solute particles: A particle-viscous bath model. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Berezhkovskii AM, Makarov DE. On distributions of barrier crossing times as observed in single-molecule studies of biomolecules. BIOPHYSICAL REPORTS 2021; 1:100029. [PMID: 36425456 PMCID: PMC9680812 DOI: 10.1016/j.bpr.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule experiments that monitor time evolution of molecular observables in real time have expanded beyond measuring transition rates toward measuring distributions of times of various molecular events. Of particular interest is the first-passage time for making a transition from one molecular configuration ( a ) to another ( b ) and conditional first-passage times such as the transition path time, which is the first-passage time from a to b conditional upon not leaving the transition region intervening between a and b . Another experimentally accessible (but not yet studied experimentally) observable is the conditional exit time, i.e., the time to leave the transition region through a specified boundary. The distributions of such times contain a wealth of mechanistic information about the transitions in question. Here, we use the first and the second (and, if desired, higher) moments of these distributions to characterize their relative width for the model in which the experimental observable undergoes Brownian motion in a potential of mean force. We show that although the distributions of transition path times are always narrower than exponential (in that the ratio of the standard deviation to the distribution's mean is always less than 1), distributions of first-passage times and of conditional exit times can be either narrow or broad, in some cases displaying long power-law tails. The conditional exit time studied here provides a generalization of the transition path time that also allows one to characterize the temporal scales of failed barrier crossing attempts.
Collapse
Affiliation(s)
- Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Dmitrii E. Makarov
- Department of Chemistry and Biochemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
11
|
Nagahata Y, Hernandez R, Komatsuzaki T. Phase space geometry of isolated to condensed chemical reactions. J Chem Phys 2021; 155:210901. [PMID: 34879678 DOI: 10.1063/5.0059618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complexity of gas and condensed phase chemical reactions has generally been uncovered either approximately through transition state theories or exactly through (analytic or computational) integration of trajectories. These approaches can be improved by recognizing that the dynamics and associated geometric structures exist in phase space, ensuring that the propagator is symplectic as in velocity-Verlet integrators and by extending the space of dividing surfaces to optimize the rate variationally, respectively. The dividing surface can be analytically or variationally optimized in phase space, not just over configuration space, to obtain more accurate rates. Thus, a phase space perspective is of primary importance in creating a deeper understanding of the geometric structure of chemical reactions. A key contribution from dynamical systems theory is the generalization of the transition state (TS) in terms of the normally hyperbolic invariant manifold (NHIM) whose geometric phase-space structure persists under perturbation. The NHIM can be regarded as an anchor of a dividing surface in phase space and it gives rise to an exact non-recrossing TS theory rate in reactions that are dominated by a single bottleneck. Here, we review recent advances of phase space geometrical structures of particular relevance to chemical reactions in the condensed phase. We also provide conjectures on the promise of these techniques toward the design and control of chemical reactions.
Collapse
Affiliation(s)
- Yutaka Nagahata
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Tamiki Komatsuzaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0 020, Japan
| |
Collapse
|
12
|
Dutta R, Pollak E. What can we learn from transition path time distributions for protein folding and unfolding? Phys Chem Chem Phys 2021; 23:23787-23795. [PMID: 34643635 DOI: 10.1039/d1cp03296h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in experimental measurements of transition path time distributions have raised intriguing theoretical questions. The present interpretation of the experimental data indicates a small value of the fitted transition path barrier height as compared to the barrier height of the unfolded to folded transition. Secondly, as shown in this paper, it is essential to analyse the experimental data using absorbing boundary conditions at the end points used to determine the transition paths. Such an analysis reveals long time tails that have thus far eluded quantitative theoretical interpretation. Is this due to uncertainty in the experimental data or does it call for a rethinking of the theoretical interpretation? A detailed study of the transition path time distribution using a diffusive model leads to the following conclusions. a. The present experimental data is not accurate enough to discern between functional forms of bell shaped free energy barriers. b. Long time tails indicate the possible existence of a "trap" in the transition path region. c. The "trap" may be considered as a well in the free energy surface. d. The long time tail is quite sensitive to the form of the trap so that future measurements of the long time tail as a function of the location of the end points of the transition path may make it possible to not only determine the well depth but also to distinguish between different functional forms for the free energy surface. e. Introduction of a well along the transition path leads to good fits with the experimental data provided that the transition path barrier height is ∼3kBT, substantially higher than the estimates of ∼1kBT based on bell shaped functions. The results presented here negate the need of introducing multi-dimensional effects, free energy barrier asymmetry, sub-diffusive memory kernels or systematic ruggedness to explain the experimentally measured data.
Collapse
Affiliation(s)
- Rajesh Dutta
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Eli Pollak
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
13
|
Sharma S, Singh V, Biswas P. Effect of ligand binding on riboswitch folding: Theory and simulations. J Chem Phys 2021; 154:185101. [PMID: 34241023 DOI: 10.1063/5.0047684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of ligand binding on the conformational transitions of the add A-riboswitch in cellular environments is investigated theoretically within the framework of the generalized Langevin equation combined with steered molecular dynamics simulations. Results for the transition path time distribution provide an estimate of the transit times, which are difficult to determine experimentally. The time for the conformational transitions of the riboswitch aptamer is longer for the ligand bound state as compared to that of the unbound one. The transition path time of the riboswitch follows a counterintuitive trend as it decreases with an increase in the barrier height. The mean transition path time of either transitions of the riboswitch in the ligand bound/unbound state increases with an increase in the complexity of the surrounding environment due to the caging effect. The results of the probability density function, transition path time distribution, and mean transition path time obtained from the theory qualitatively agree with those obtained from the simulations and with earlier experimental and theoretical studies.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Vishal Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
14
|
Singh D, Mondal K, Chaudhury S. Effect of Memory and Inertial Contribution on Transition-Time Distributions: Theory and Simulations. J Phys Chem B 2021; 125:4536-4545. [PMID: 33900087 DOI: 10.1021/acs.jpcb.1c00173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transition paths refer to the time taken by molecules to cross a barrier separating two molecular conformations. In this work, we study how memory, as well as inertial contribution in the dynamics along a reaction coordinate, can affect the distribution of the transition-path time. We use a simple model of dynamics governed by a generalized Langevin equation with a power-law memory along with the inertial term, which was neglected in previous studies, where memory effects were explored only in the overdamped limit. We derive an approximate expression for the transit-time distribution and discuss our results for the short- and long-time limits and also compare it with known results in the high friction (overdamped) limit as well as in the Markovian limit. We have developed a numerical algorithm to test our theoretical results against extensive numerical simulations.
Collapse
Affiliation(s)
- Divya Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Kinjal Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
15
|
Taumoefolau GH, Best RB. Estimating transition path times and shapes from single-molecule photon trajectories: A simulation analysis. J Chem Phys 2021; 154:115101. [PMID: 33752373 DOI: 10.1063/5.0040949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In a two-state molecular system, transition paths comprise the portions of trajectories during which the system transits from one stable state to the other. Because of their low population, it is essentially impossible to obtain information on transition paths from experiments on a large sample of molecules. However, single-molecule experiments such as laser optical tweezers or Förster resonance energy transfer (FRET) spectroscopy have allowed transition-path durations to be estimated. Here, we use molecular simulations to test the methodology for obtaining information on transition paths in single-molecule FRET by generating photon trajectories from the distance trajectories obtained in the simulation. Encouragingly, we find that this maximum likelihood analysis yields transition-path times within a factor of 2-4 of the values estimated using a good coordinate for folding, but tends to systematically underestimate them. The underestimation can be attributed partly to the fact that the large changes in the end-end distance occur mostly early in a folding trajectory. However, even if the transfer efficiency is a good reaction coordinate for folding, the assumption that the transition-path shape is a step function still leads to an underestimation of the transition-path time as defined here. We find that allowing more flexibility in the form of the transition path model allows more accurate transition-path times to be extracted and points the way toward further improvements in methods for estimating transition-path time and transition-path shape.
Collapse
Affiliation(s)
- Grace H Taumoefolau
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, USA
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
16
|
Abstract
Chemists visualize chemical reactions as motion along one-dimensional "reaction coordinates" over free energy barriers. Various rate theories, such as transition state theory and the Kramers theory of diffusive barrier crossing, differ in their assumptions regarding the mathematical specifics of this motion. Direct experimental observation of the motion along reaction coordinates requires single-molecule experiments performed with unprecedented time resolution. Toward this goal, recent single-molecule studies achieved time resolution sufficient to catch biomolecules in the act of crossing free energy barriers as they fold, bind to their targets, or undergo other large structural changes, offering a window into the elusive reaction "mechanisms". This Perspective describes what we can learn (and what we have already learned) about barrier crossing dynamics through synergy of single-molecule experiments, theory, and molecular simulations. In particular, I will discuss how emerging experimental data can be used to answer several questions of principle. For example, is motion along the reaction coordinate diffusive, is there conformational memory, and is reduction to just one degree of freedom to represent the reaction mechanism justified? It turns out that these questions can be formulated as experimentally testable mathematical inequalities, and their application to experimental and simulated data has already led to a number of insights. I will also discuss open issues and current challenges in this fast evolving field of research.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Ferrer BR, Gomez-Solano JR, Arzola AV. Fluid Viscoelasticity Triggers Fast Transitions of a Brownian Particle in a Double Well Optical Potential. PHYSICAL REVIEW LETTERS 2021; 126:108001. [PMID: 33784172 DOI: 10.1103/physrevlett.126.108001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Thermally activated transitions are ubiquitous in nature, occurring in complex environments which are typically conceived as ideal viscous fluids. We report the first direct observations of a Brownian bead transiting between the wells of a bistable optical potential in a viscoelastic fluid with a single long relaxation time. We precisely characterize both the potential and the fluid, thus enabling a neat comparison between our experimental results and a theoretical model based on the generalized Langevin equation. Our findings reveal a drastic amplification of the transition rates compared to those in a Newtonian fluid, stemming from the relaxation of the fluid during the particle crossing events.
Collapse
Affiliation(s)
- Brandon R Ferrer
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Codigo Postal 04510, México
| | - Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Codigo Postal 04510, México
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Codigo Postal 04510, México
| |
Collapse
|
18
|
Broad distributions of transition-path times are fingerprints of multidimensionality of the underlying free energy landscapes. Proc Natl Acad Sci U S A 2020; 117:27116-27123. [PMID: 33087575 DOI: 10.1073/pnas.2008307117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent single-molecule experiments have observed transition paths, i.e., brief events where molecules (particularly biomolecules) are caught in the act of surmounting activation barriers. Such measurements offer unprecedented mechanistic insights into the dynamics of biomolecular folding and binding, molecular machines, and biological membrane channels. A key challenge to these studies is to infer the complex details of the multidimensional energy landscape traversed by the transition paths from inherently low-dimensional experimental signals. A common minimalist model attempting to do so is that of one-dimensional diffusion along a reaction coordinate, yet its validity has been called into question. Here, we show that the distribution of the transition path time, which is a common experimental observable, can be used to differentiate between the dynamics described by models of one-dimensional diffusion from the dynamics in which multidimensionality is essential. Specifically, we prove that the coefficient of variation obtained from this distribution cannot possibly exceed 1 for any one-dimensional diffusive model, no matter how rugged its underlying free energy landscape is: In other words, this distribution cannot be broader than the single-exponential one. Thus, a coefficient of variation exceeding 1 is a fingerprint of multidimensional dynamics. Analysis of transition paths in atomistic simulations of proteins shows that this coefficient often exceeds 1, signifying essential multidimensionality of those systems.
Collapse
|
19
|
Caraglio M, Sakaue T, Carlon E. Transition path times in asymmetric barriers. Phys Chem Chem Phys 2020; 22:3512-3519. [PMID: 31993608 DOI: 10.1039/c9cp05659a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biomolecular conformational transitions are usually modeled as barrier crossings in a free energy landscape. The transition paths connect two local free energy minima and transition path times (TPT) are the actual durations of the crossing events. The simplest model employed to analyze TPT and to fit empirical data is that of a stochastic particle crossing a parabolic barrier. Motivated by some disagreement between the value of the barrier height obtained from the TPT distributions as compared to the value obtained from kinetic and thermodynamic analyses, we investigate here TPT for barriers which deviate from the symmetric parabolic shape. We introduce a continuous set of potentials, that starting from a parabolic shape, can be made increasingly asymmetric by tuning a single parameter. The TPT distributions obtained in the asymmetric case are very well-fitted by distributions generated by parabolic barriers. The fits, however, provide values for the barrier heights and diffusion coefficients which deviate from the original input values. We show how these findings can be understood from the analysis of the eigenvalues spectrum of the Fokker-Planck equation and highlight connections with experimental results.
Collapse
Affiliation(s)
- Michele Caraglio
- KU Leuven, Soft Matter and Biophysics Unit, Celestijnenlaan 200D, B-3001 Leuven, Belgium. and Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Takahiro Sakaue
- Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Enrico Carlon
- KU Leuven, Soft Matter and Biophysics Unit, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
| |
Collapse
|
20
|
Freitas FC, Junio de Oliveira R. Extension-Dependent Drift Velocity and Diffusion (DrDiff) Directly Reconstructs the Folding Free Energy Landscape of Atomic Force Microscopy Experiments. J Phys Chem Lett 2020; 11:800-807. [PMID: 31928018 DOI: 10.1021/acs.jpclett.9b02146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Two equilibrium force microscopy trajectories [q(t)] of high-precision single-molecule spectroscopy assays were analyzed: the pulling of an HIV RNA hairpin and of a 3-aa sequence of the bacteriorhodopsin membrane protein. Both present hundreds of two-state folding transitions, and their free-energy [F(q)] landscapes were previously obtained by deconvolving time signals with the inverse Boltzmann and pfold methods. In this letter, the two F profiles were reconstructed directly from the measured time-series by the drift-diffusion (DrDiff) framework that characterized the effective conformational drift-velocity [v(q)] and diffusion [D(q)] coefficients. The two thermodynamic F profiles reconstructed with DrDiff directly from q(t) were in good agreement with those previously obtained from the deconvolved time signals. q(t) trajectories simulated with a two-dimensional framework in which the diffusion coefficient of the pulling setup (q coordinate) differed from the molecule (x coordinate) were also analyzed by DrDiff. The performance in reconstructing F was investigated in different conditions of diffusion anisotropy in the simulated time-series using Brownian dynamics. In addition, recently developed theories were used in order to evaluate the quality of the analysis performed in the experimental time series: the memory effects and the intrinsic biomolecular dynamic properties after connecting the probe to the molecule. With the 2-dimensional diffusive models and the additional analyses, it is proposed that the different physical regimes imposed by the stiffer probes of the two biomolecules will have an impact in the measured extension-dependent D and, thus, in the reconstruction of F by DrDiff. Stiffer AFM probes may reflect the molecular behavior more faithfully and reconstruction of F might be more successful. The reported quantities extracted directly from q(t) highlights the current state of the biomolecule characterization by force spectroscopy experiments: it is still challenging despite the recent advances, yet it is very promising.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , 38064-200 MG , Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , 38064-200 MG , Brazil
| |
Collapse
|
21
|
Ozmaian M, Makarov DE. Transition path dynamics in the binding of intrinsically disordered proteins: A simulation study. J Chem Phys 2019; 151:235101. [PMID: 31864244 DOI: 10.1063/1.5129150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Association of proteins and other biopolymers is a ubiquitous process in living systems. Recent single-molecule measurements probe the dynamics of association in unprecedented detail by measuring the properties of association transition paths, i.e., short segments of molecular trajectories between the time the proteins are close enough to interact and the formation of the final complex. Interpretation of such measurements requires adequate models for describing the dynamics of experimental observables. In an effort to develop such models, here we report a simulation study of the association dynamics of two oppositely charged, disordered polymers. We mimic experimental measurements by monitoring intermonomer distances, which we treat as "experimental reaction coordinates." While the dynamics of the distance between the centers of mass of the molecules is found to be memoryless and diffusive, the dynamics of the experimental reaction coordinates displays significant memory and can be described by a generalized Langevin equation with a memory kernel. We compute the most commonly measured property of transition paths, the distribution of the transition path time, and show that, despite the non-Markovianity of the underlying dynamics, it is well approximated as one-dimensional diffusion in the potential of mean force provided that an apparent value of the diffusion coefficient is used. This apparent value is intermediate between the slow (low frequency) and fast (high frequency) limits of the memory kernel. We have further studied how the mean transition path time depends on the ionic strength and found only weak dependence despite strong electrostatic attraction between the polymers.
Collapse
Affiliation(s)
- Masoumeh Ozmaian
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
22
|
Pyo AGT, Woodside MT. Memory effects in single-molecule force spectroscopy measurements of biomolecular folding. Phys Chem Chem Phys 2019; 21:24527-24534. [PMID: 31663550 DOI: 10.1039/c9cp04197d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Folding is generally assumed to be a Markov process, without memory. When the molecular motion is coupled to that of a probe as in single-molecule force spectroscopy (SMFS) experiments, however, theory predicts that the coupling to a second Markov process should induce memory when monitoring a projection of the full multi-dimensional motion onto a reduced coordinate. We developed a method to evaluate the time constant of the induced memory from its effects on the autocorrelation function, which can be readily determined from experimental data. Applying this method to both simulated SMFS measurements and experimental trajectories of DNA hairpin folding measured by optical tweezers as a model system, we validated the prediction that the linker induces memory. For these measurements, the timescale of the induced memory was found to be similar to the time required for the force probe to respond to changes in the molecule, and in the regime where the experimentally observed dynamics were not significantly perturbed by probe-molecule coupling artifacts. Memory effects are thus a general feature of SMFS measurements induced by the mechanical connection between the molecule and force probe that should be considered when interpreting experimental data.
Collapse
Affiliation(s)
- Andrew G T Pyo
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | |
Collapse
|
23
|
Hoffer NQ, Woodside MT. Probing microscopic conformational dynamics in folding reactions by measuring transition paths. Curr Opin Chem Biol 2019; 53:68-74. [PMID: 31479831 DOI: 10.1016/j.cbpa.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/08/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
Abstract
Transition paths comprise those parts of a folding trajectory where the molecule passes through the high-energy transition states separating folded and unfolded conformations. The transition states determine the folding kinetics and mechanism but are difficult to observe because of their brief duration. Single-molecule experiments have in recent years begun to characterize transition paths in folding reactions, allowing the microscopic conformational dynamics that occur as a molecule traverses the energy barriers to be probed directly. Here we review single-molecule fluorescence and force spectroscopy measurements of transition-path properties, including the time taken to traverse the paths, the local velocity along them, the path shapes, and the variability within these measurements reflecting differences between individual barrier crossings. We discuss how these measurements have been related to theories of folding as diffusion over an energy landscape to deduce properties such as the diffusion coefficient, and how they are being combined with simulations to obtain enhanced atomistic understanding of folding. The richly detailed information available from transition path measurements holds great promise for improved understanding of microscopic mechanisms in folding.
Collapse
Affiliation(s)
- Noel Q Hoffer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
24
|
Berezhkovskii AM, Dagdug L, Bezrukov SM. Exact Solutions for Distributions of First-Passage, Direct-Transit, and Looping Times in Symmetric Cusp Potential Barriers and Wells. J Phys Chem B 2019; 123:3786-3796. [PMID: 30964994 DOI: 10.1021/acs.jpcb.9b01616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a particle diffusing in one dimension, the distribution of its first-passage time from point a to point b is determined by the durations of the particle trajectories that start from point a and are terminated as soon as they touch point b for the first time. Any such trajectory consists of looping and direct-transit segments. The latter is the final part of the trajectory that leaves point a and goes to point b without returning to point a. The rest of the trajectory is the looping segment that makes numerous loops which begin and end at the same point a without touching point b. In this article we discuss general relations between the first-passage time distribution and those for the durations of the two segments. These general relations allow us to find exact solutions for the Laplace transforms of the distributions of the first-passage, direct-transit, and looping times for transitions between two points separated by a symmetric cusp potential barrier or well of arbitrary height and depth, respectively. The obtained Laplace transforms are inverted numerically, leading to nontrivial dependences of the resulting distributions on the barrier height and the well depth.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , Maryland 20892 , United States.,Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Leonardo Dagdug
- Departamento de Fisica , Universidad Autonoma Metropolitana-Iztapalapa , 09340 Mexico City , Mexico
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
25
|
Measuring the average shape of transition paths during the folding of a single biological molecule. Proc Natl Acad Sci U S A 2019; 116:8125-8130. [PMID: 30952784 DOI: 10.1073/pnas.1816602116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transition paths represent the parts of a reaction where the energy barrier separating products and reactants is crossed. They are essential to understanding reaction mechanisms, yet many of their properties remain unstudied. Here, we report measurements of the average shape of transition paths, studying the folding of DNA hairpins as a model system for folding reactions. Individual transition paths were detected in the folding trajectories of hairpins with different sequences held under tension in optical tweezers, and path shapes were computed by averaging all transitions in the time domain, 〈t(x)〉, or by averaging transitions of a given duration in the extension domain, 〈x(t|τ)〉 τ Whereas 〈t(x)〉 was close to straight, with only a subtle curvature, 〈x(t|τ)〉 τ had more pronounced curvature that fit well to theoretical expectations for the dominant transition path, returning diffusion coefficients similar to values obtained previously from independent methods. Simulations suggested that 〈t(x)〉 provided a less reliable representation of the path shape than 〈x(t|τ)〉 τ , because it was far more sensitive to the effects of coupling the molecule to the experimental force probe. Intriguingly, the path shape variance was larger for some hairpins than others, indicating sequence-dependent changes in the diversity of transition paths reflective of differences in the character of the energy barriers, such as the width of the barrier saddle-point or the presence of parallel paths through multiple barriers between the folded and unfolded states. These studies of average path shapes point the way forward for probing the rich information contained in path shape fluctuations.
Collapse
|
26
|
Satija R, Makarov DE. Generalized Langevin Equation as a Model for Barrier Crossing Dynamics in Biomolecular Folding. J Phys Chem B 2019; 123:802-810. [PMID: 30648875 DOI: 10.1021/acs.jpcb.8b11137] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational memory in single-molecule dynamics has attracted recent attention and, in particular, has been invoked as a possible explanation of some of the intriguing properties of transition paths observed in single-molecule force spectroscopy (SMFS) studies. Here we study one candidate for a non-Markovian model that can account for conformational memory, the generalized Langevin equation with a friction force that depends not only on the instantaneous velocity but also on the velocities in the past. The memory in this model is determined by a time-dependent friction memory kernel. We propose a method for extracting this kernel directly from an experimental signal and illustrate its feasibility by applying it to a generalized Rouse model of a SMFS experiment, where the memory kernel is known exactly. Using the same model, we further study how memory affects various statistical properties of transition paths observed in SMFS experiments and evaluate the performance of recent approximate analytical theories of non-Markovian dynamics of barrier crossing. We argue that the same type of analysis can be applied to recent single-molecule observations of transition paths in protein and DNA folding.
Collapse
|