1
|
Wen J, Gao J, Liu Y, Li T, Pu Q, Ding X, Li Y, Fenech A. Toxicological mechanisms and molecular impacts of tire particles and antibiotics on zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124912. [PMID: 39245201 DOI: 10.1016/j.envpol.2024.124912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Tire microplastics (TMPs) and antibiotics are emerging pollutants that widely exist in water environments. The coexistence of these pollutants poses severe threats to aquatic organisms. However, the toxicity characteristics and key molecular factors of the combined exposure to TMPs in aquatic organisms remain unknown. Therefore, the joint toxicity of styrene-butadiene rubber TMPs (SBR-TMPs) and 32 antibiotics (macrolides, fluoroquinolones, β-lactams, sulfonamides, tetracyclines, nitroimidazoles, highly toxic antibiotics, high-content antibiotics, and common antibiotics) in zebrafish was investigated using a full factorial design, molecular docking, and molecular dynamics simulation. Sixty-four combinations of antibiotics were designed to investigate the hepatotoxicity of the coexistence of SBR-TMPs additives and antibiotics in zebrafish. Results indicated that low-order effects of antibiotics (e.g., enoxacin-lomefloxacin and ofloxacin-enoxacin-lomefloxacin) had relatively notable toxicity. The van der Waals interaction between additives and zebrafish cytochrome P450 enzymes primarily affected zebrafish hepatotoxicity. Zebrafish hepatotoxicity was also affected by the ability of SBR-TMPs to adsorb antibiotics, the relation between antibiotics, the affinity of antibiotics docking to zebrafish cytochrome P450 enzymes, electronegativity, atomic mass, and the hydrophobicity of the antibiotic molecules. This study aimed to eliminate the joint toxicity of TMPs and antibiotics and provide more environmentally friendly instructions for using different chemicals.
Collapse
Affiliation(s)
- Jingya Wen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Jiaxuan Gao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yajing Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Tong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xiaowen Ding
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Adam Fenech
- School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, Canada.
| |
Collapse
|
2
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. Construction of an antidepressant priority list based on functional, environmental, and health risks using an interpretable mixup-transformer deep learning model. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134651. [PMID: 38843640 DOI: 10.1016/j.jhazmat.2024.134651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024]
Abstract
As emerging pollutants, antidepressants (AD) must be urgently investigated for risk identification and assessment. This study constructed a comprehensive-effect risk-priority screening system (ADRank) for ADs by characterizing AD functionality, occurrence, persistence, bioaccumulation and toxicity based on the integrated assignment method. A classification model for ADs was constructed using an improved mixup-transformer deep learning method, and its classification accuracy was compared with those of other models. The accuracy of the proposed model improved by up to 23.25 % compared with the random forest model, and the reliability was 80 % more than that of the TOPSIS method. A priority screening candidate list was proposed to screen 33 high-priority ADs. Finally, SHapley Additive explanation (SHAP) visualization, molecular dynamics, and amino acid analysis were performed to analyze the correlation between AD structure and toxic receptor binding characteristics and reveal the differences in AD risk priority. ADs with more intramolecular hydrogen bonds, higher hydrophobicity, and electronegativity had a more significant risk. Van der Waals and electrostatic interactions were the primary influencing factors, and significant differences in the types and proportions of the main amino acids in the interaction between ADs and receptors were observed. The results of the study provide constructive schemes and insights for AD priority screening and risk management.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Bhattacharjee S, Khan S. Quantification of the impact of water on the wetting behavior of hydrophilic ionic liquid: a molecular dynamics study. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2175171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Sanchari Bhattacharjee
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology Patna, Patna, India
| | - Sandip Khan
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology Patna, Patna, India
| |
Collapse
|
4
|
Kurchavov D, Rustambek U, Haddad M, Ottochian A, Lefèvre G, Ciofini I, Lair V, Volovitch P. Influence of PEG-containing cation on molecular state of water in water – Acetate based ionic liquids mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Excess properties and activation properties for viscous flow of amino acid ionic liquids with H2O binary mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Chasib KF, Mohsen AJ, Jisha KJ, Gardas RL. Extraction of phenolic pollutants from industrial wastewater using a bulk ionic liquid membrane technique. ENVIRONMENTAL TECHNOLOGY 2022; 43:1038-1049. [PMID: 32815798 DOI: 10.1080/09593330.2020.1813209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
The academia and chemical industry are actively searching for alternative solvents to meet technology requirements since the most widely used solvents are harmful and volatile. For ionic liquids, there are several advantages over conventionally using organic membrane solvents, including high thermal stability, negligible vapour pressure, low volatility, etc. Here in this study, we have analyzed the abilities of ionic liquids as pure solvents as well as their binary mixtures, to recover phenolic compounds from the industrial wastewater. The field of phenol extraction from wastewater using ionic liquids remains less exposed, and we presume that the work of this kind would open up more and more opportunities for the scientific community as well as industrial people. Based on all these assumptions, the present work includes experimental data of a work which explains the possibilities of room temperature ionic liquids (RTILs) as potential bulk liquid membranes (BLM) for extracting phenol and other phenolic compounds from the industrial affluents. Four high hydrophobicity ionic liquids namely: 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [Bmim][NTf2], 1-butyl-3-methylimidazolium hexafluorophosphate [Bmim] [PF6] and 1-ethyl-3-methyimidazolium bis(trifluoromethanesulfonyl) imide [Emim][NTf2] were used for investigating the Phenol extraction efficiency and stripping efficiency. To provide a best comprehension of the influence of the phenolic structure as well as the nature of cation on the extraction ability of the ILs, we tried to understand the molecular interactions between the phenolic compounds and the solvents. The influence of hydrophobicity of ionic liquids and different kinds of anions on the extraction of phenol and efficiencies of stripping were investigated. All the experimental investigations performed here indicated that the only cation part of the ionic liquid is not an important aspect directly in this extraction, but the hydrogen bonding and the solute-solvent interactions play a significant role in the phenol removal process from aqueous phase to IL phase. First, the optimal conditions of operating (settling time and stirring) were analyzed for the clarity of the experiments performed. Concentration of NaOH in enhancing the performance of ionic liquids was also inspected here in this study. A binary mixture of ionic liquids (BMILs) membrane was examined for the optimized parameters, and the efficiency of phenol extraction was analyzed with the efficiency obtained for the single ionic liquid (SIL) membranes. The phenol concentration was determined by UV/visible spectrophotometer absorbance measurements. The highest phenol extraction efficiencies of 91% and 98.5%, were achieved by using [Bmim][NTf2] and [Bmim][NTf2+PF6] respectively, and the higher stripping efficiencies came up with 79% and 84% respectively, for [Emim][NTf2] and [Bmim + Emim][NTf2]. The results show that the binary mixture ionic liquid (BMIL) membrane is a better choice than single ionic liquid (SIL) membrane solvents. Hence, [Bmim] [(NTf2+PF6)] is an excellent selection as it provides high phenol stripping and extraction efficiencies with a minimal solvent loss and better stability in transport process.
Collapse
Affiliation(s)
- Khalid Farhod Chasib
- Petroleum & Gas Engineering Department, College of Engineering, University of ThiQar, Nasiriyah, Iraq
| | - Anwer Jassim Mohsen
- Oil & Gas Refinery Engineering Branch, Chemical Engineering Department, University of Technology, Baghdad, Iraq
| | - K J Jisha
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai, India
| | - Ramesh L Gardas
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai, India
| |
Collapse
|
8
|
Yu G, Dai C, Chen B, Lei Z, Wei Z, Chen K. Thermodynamic and molecular insights into gas drying with ionic liquid − based mixed absorbents. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Gliege ME, Lin WJ, Xu Y, Chen MT, Whitney C, Gunckel R, Dai L. Molecular Dynamics Insight into the Role of Water Molecules in Ionic Liquid Mixtures of 1-Butyl-3-methylimidazolium Iodide and Ethylammonium Nitrate. J Phys Chem B 2022; 126:1115-1124. [PMID: 35107286 DOI: 10.1021/acs.jpcb.1c05595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imidazolium-based ionic liquids are well known for their versatility as solvents for various applications such as dye-sensitized solar cells, fuel cells, and lithium-ion batteries; however, their complex interactions continue to be investigated to further improve upon their design. Ionic liquids (ILs) are commonly mixed with co-solvents such as water, organic solvents, or other ionic liquids to tailor their physiochemical properties. To better predict these properties and fundamentally understand the molecular interactions within the electrolyte mixtures, molecular dynamics (MD) simulations are often employed. In this study, MD simulations are performed on ternary solutions containing ionic liquids of 1-butyl-3-methylimidazolium iodide ([BMIM][I]) and ethylammonium nitrate ([EA][NO3]) with increasing concentration of water. As previously reported, these ternary solutions displayed a wide temperature window of thermal stability and electrochemical conductivity. Utilizing MD simulations, the complex intermolecular interactions are identified, and the role of water as a co-solvent is disclosed to correlate with changes in their bulk properties. The MD results, including simulation box snapshots, radial distribution functions, and self-diffusion coefficients, reveal the formation of heterogeneous regimes with increasing water concentration, hydrogen bonding between iodide-water, iodide-[EA]+, and a change in IL ordering when in mixtures containing water. The simulations also display the formation of water aggregates and networks at high water concentrations, which can contribute to the thermal behavior of the respective mixtures. As the design of IL-based electrolytes grows in demand with increasing complexity, this work demonstrates the capability of MD simulations containing multiple constituents and their necessity in material development through identification of microscopic structure-property relationships.
Collapse
Affiliation(s)
- Marisa E Gliege
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Wendy J Lin
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Yifei Xu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Mu-Tao Chen
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Christopher Whitney
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan Gunckel
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Lenore Dai
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Bhattacharjee S, Khan S. Molecular insights into the electrowetting behavior of aqueous ionic liquids. Phys Chem Chem Phys 2022; 24:1803-1813. [PMID: 34985472 DOI: 10.1039/d1cp01821c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics (MD) simulations were applied to investigate the wettability of aqueous hydrophilic and hydrophobic imidazolium-based ionic liquid (IL) nano-droplets on a graphite surface under a perpendicular electric field. Imminent transformation in the droplet configuration was observed at E = 0.08 V Å-1 both for hydrophobic ILs 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][NTF2] and SPC/E water droplets. However, for the hydrophilic IL, 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4], the droplet was entirely elongated to column-shaped at E = 0.09 V Å-1 for lower weight percentages of ILs and at E = 0.15 V Å-1 for a higher weight percentage of ILs (i.e., 50 wt%). We explored the impact of the electric field through various parameters such as mass and charge density distribution across the droplet, contact angle of the droplet, orientation of water dipoles, and hydrogen bond analysis. The external electric field was found to influence the orientation of water dipoles and the accumulation of charge at various interfaces was observed with an increase in an electric field, which finally leads to shape deformation and depletion of ions from the liquid-vapor interface of the droplet. However, this behavior strongly depends on the hydrophilicity or hydrophobicity of the ILs and thus, is critically examined for both the ILs.
Collapse
Affiliation(s)
- Sanchari Bhattacharjee
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology Patna, Patna, 801103, India.
| | - Sandip Khan
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology Patna, Patna, 801103, India.
| |
Collapse
|
11
|
Experimental and DFT studies on foam performances of lauryl ether sulfate-based anionic surface active ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Hu K, Zhang H, Kong M, Qin M, Ouyang M, Jiang Q, Wang G, Zhuang L. Effect of alkyl chain length of imidazolium cations on foam properties of anionic surface active ionic liquids: Experimental and DFT studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Kashin AS, Boiko DA, Ananikov VP. Neural Network Analysis of Electron Microscopy Video Data Reveals the Temperature-Driven Microphase Dynamics in the Ions/Water System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007726. [PMID: 33938144 DOI: 10.1002/smll.202007726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Real-time field-emission scanning electron microscopy (FE-SEM) measurements and neural network analysis were successfully merged to observe the temperature-induced behavior of soft liquid microdomains in mixtures of different ionic liquids with water. The combination of liquid FE-SEM and in situ heating techniques revealed temperature-driven solution restructuring for ions/water systems with different water states and their critical point behavior expressed in a rapid switch between thermal expansion and shrinkage of liquid microphases at temperatures of ≈100-130 °C, which was directly recorded on electron microscopy videos. Automation of FE-SEM video analysis by a neural network approach allowed quantification of the morphological changes in ions/water systems during heating on the basis of thousands of images processed with a speed almost equal to the frame rate of original electron microscopy videos. Tracking and evolution of the micro-heterogeneous domains, hypothesized in the Ioliomics concept, was mapped and quantified for the first time. The present study describes the concept for quick acquisition of big data in electron microscopy, develops rapid neural network analysis and shows how to link microscopic data to fundamental molecular properties.
Collapse
Affiliation(s)
- Alexey S Kashin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| | - Daniil A Boiko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| |
Collapse
|
14
|
Insight into the behavior at the hygroscopicity and interface of the hydrophobic imidazolium-based ionic liquids. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Chang TM, Billeck SE. Structure, Molecular Interactions, and Dynamics of Aqueous [BMIM][BF 4] Mixtures: A Molecular Dynamics Study. J Phys Chem B 2021; 125:1227-1240. [PMID: 33497566 DOI: 10.1021/acs.jpcb.0c09731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations with many-body polarizable force fields were carried out to investigate the thermodynamic, structural, and dynamic properties of aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). The radial distribution functions exhibit well-defined features, revealing favored structural correlations between [bmim]+, [BF4]-, and H2O. The addition of water is shown to alter ionic liquid structural organizations by replacing counterions in the coordination shells and disrupt the cation-anion network. At low water concentration, the majority of water molecules are isolated from each other and have lower average dipole moment than that in pure water. With increasing hydration level, while [bmim][BF4] ionic network breaks up and becomes isolated ion pairs or free ions in the dilute limit, water begins to form clusters of increasing sizes and eventually forms a percolating network. As a result, the average water dipole moment increases and approaches its bulk value. Water is also observed to have a substantial influence on the dynamics of ionic liquids. At low water content, the cation and anion have similar diffusion coefficients due to the correlated ionic motion of long-lived ion pairs. As the water concentration increases, both ions exhibit greater mobility and faster rotations from the breakup of ionic network. Consequently, the ionic conductivity of [bmim][BF4] aqueous solutions rises with increasing water composition.
Collapse
Affiliation(s)
- Tsun-Mei Chang
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha, Wisconsin 53141, United States
| | - Stephanie E Billeck
- Department of Chemistry, University of Wisconsin-Parkside, Kenosha, Wisconsin 53141, United States
| |
Collapse
|
16
|
Bhattacharjee S, Chakraborty D, Khan S. Wetting behavior of aqueous 1-alkyl-3-methylimidazolium tetrafluoroborate {[Cn MIM][BF4] (n = 2, 4, 6)} on graphite surface. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Theoretical and experimental studies of ionic liquid-urea mixtures on chitosan dissolution: Effect of cationic structure. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Silva W, Zanatta M, Ferreira AS, Corvo MC, Cabrita EJ. Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis. Int J Mol Sci 2020; 21:ijms21207745. [PMID: 33086771 PMCID: PMC7589445 DOI: 10.3390/ijms21207745] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
In the last few years, ionic liquids (ILs) have been the focus of extensive studies concerning the relationship between structure and properties and how this impacts their application. Despite a large number of studies, several topics remain controversial or not fully answered, such as: the existence of ion pairs, the concept of free volume and the effect of water and its implications in the modulation of ILs physicochemical properties. In this paper, we present a critical review of state-of-the-art literature regarding structure–property relationship of ILs, we re-examine analytical theories on the structure–property correlations and present new perspectives based on the existing data. The interrelation between transport properties (viscosity, diffusion, conductivity) of IL structure and free volume are analysed and discussed at a molecular level. In addition, we demonstrate how the analysis of microscopic features (particularly using NMR-derived data) can be used to explain and predict macroscopic properties, reaching new perspectives on the properties and application of ILs.
Collapse
Affiliation(s)
- Wagner Silva
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (W.S.); (A.S.F.)
| | - Marcileia Zanatta
- i3N|Cenimat, Materials Science Department, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.Z.); (M.C.C.)
| | - Ana Sofia Ferreira
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (W.S.); (A.S.F.)
| | - Marta C. Corvo
- i3N|Cenimat, Materials Science Department, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.Z.); (M.C.C.)
| | - Eurico J. Cabrita
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (W.S.); (A.S.F.)
- Correspondence:
| |
Collapse
|
19
|
Kowsari MH, Torabi SM. Molecular Dynamics Insights into the Nanoscale Structural Organization and Local Interaction of Aqueous Solutions of Ionic Liquid 1-Butyl-3-methylimidazolium Nitrate. J Phys Chem B 2020; 124:6972-6985. [PMID: 32687363 DOI: 10.1021/acs.jpcb.0c01803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considering the growing number of applications of the aqueous ionic liquids (ILs), atomistic molecular dynamics (MD) simulations were used to probe the effect of water molar fraction, xw, ranging from 0.00 to 0.90, on the nanoscale local structure of 1-butyl-3-methylimidazolium nitrate, [bmim][NO3], IL. The results prove that, with water addition, the cation-anion, cation-cation, and anion-anion structural correlations are weakened, while strong anion-water and unconventional cation-water hydrogen bonds are formed in the solutions. Water molecules were detected as bridges between nitrate anions, and the water cluster size distribution at different xw's was investigated. Simulation shows a similar pattern of probability densities for water and anion around the acidic hydrogen atoms of the reference cation ring, while both species move away from the cation butyl chain. Increasing the water concentration to xw = 0.90 causes decreasing of the local arrangement of the nearest-neighboring cations, because of the weakening of cation-cation π-π stacking. In addition, this dilution reduces the probability of the in-plane cation-anion conformation, disrupts both the polar ionic network and nonpolar domains, and diminishes the nanoaggregation of the cation butyl chains compared to those of the neat IL. These results can rationalize the origins of the fluidity enhancements and transport property trends upon adding water to the imidazolium-based ILs. The current study proposes a deep atomistic-level insight into the complex coupling between water concentration, microscopic structure, and local interactions of aqueous imidazolium-based ILs with hydrophilic anions.
Collapse
Affiliation(s)
- Mohammad H Kowsari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S Mohammad Torabi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
20
|
Majhi D, Dai J, Komolkin AV, Dvinskikh SV. Understanding ionic mesophase stabilization by hydration: a solid-state NMR study. Phys Chem Chem Phys 2020; 22:13408-13417. [PMID: 32510078 DOI: 10.1039/d0cp01511c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The correlation between the water contribution to hydrogen bonding within ionic sublayer, mesophase order parameter, and ion translational self-diffusion in the layered ionic liquid crystalline phase is investigated. Changes in hydrogen bonding, conformational and translational dynamics, and orientational order upon hydration were followed by solid-state NMR combined with density functional theory (DFT) analysis. We observed that the smectic mesophase of monohydrated imidazolium-based ionic liquids, which was stabilized in a wider temperature range compared to that of anhydrous materials, counterintuitively exhibited a lower orientational order of organic cations. Thus the role of anisotropic alignment of cations and contribution of dispersion forces in the mesophase stability decreased upon hydration. The local dynamics of cations is controlled by the alignment of the bulky methyl-imidazolium ring, experiencing strong electrostatic and H-bond interactions in the ionic sublayer. Anisotropy of translational diffusion increased in the hydrated samples, thus supporting the layer-stabilizing effect of water. The effect of decreasing molecular order is outweighed by the contribution of water hydrogen bonding to the overall interaction energy within the ionic sublayer.
Collapse
Affiliation(s)
- Debashis Majhi
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Jing Dai
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Andrei V Komolkin
- Faculty of Physics, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Sergey V Dvinskikh
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden. and Laboratory of Biomolecular NMR, Saint Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
21
|
Reddy TDN, Mallik BS. Ionic Dynamics of Hydroxylammonium Ionic Liquids: A Classical Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:4960-4974. [PMID: 32452686 DOI: 10.1021/acs.jpcb.0c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Th. Dhileep N. Reddy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285 Sangareddy, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285 Sangareddy, Telangana, India
| |
Collapse
|
22
|
Bhattacharjee S, Khan S. The wetting behavior of aqueous imidazolium based ionic liquids: a molecular dynamics study. Phys Chem Chem Phys 2020; 22:8595-8605. [PMID: 32255456 DOI: 10.1039/d0cp00143k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous ionic liquids are of particular interest due to their tunability of physical and chemical properties and a deeper understanding of their structure-property relationship is desired. Molecular dynamics (MD) simulations were conducted to study the wetting behavior of aqueous imidazolium-based ionic liquids (ILs), consisting of a 1-ethyl-3-methylimidazolium [EMIM]+ cation and either a hydrophilic boron tetrafluoride [BF4]- or a hydrophobic bis(trifluoromethylsulfonyl)imide [NTF2]- anion mixed in water. To understand the effect of anion and concentration of ILs at the graphite solid-liquid interface, wettability studies were performed with IL concentrations from 0-50 wt%. The contact angle of aqueous IL droplets decreases with increasing IL concentration. Droplet characteristics near the surface were investigated by profiling the density perpendicular (z-direction) and horizontal (r-direction) to the graphite sheet; this was further quantified by an orientation order parameter. Due to the preferred adsorption of ILs, water depletes near the surface as IL concentration increases. The hydrophobic [NTF2]- anion forces the IL toward the interface from the bulk, whereas the hydrophilic [BF4]- anion causes the IL to remain in the bulk of the droplet. Differences in water-anion hydrogen bonding, the nature of the anions, and their interfacial tensions are crucial factors in the wetting behavior of aqueous ionic liquids.
Collapse
Affiliation(s)
- Sanchari Bhattacharjee
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, 801103, India.
| | - Sandip Khan
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, 801103, India.
| |
Collapse
|
23
|
Shyama M, Lakshmipathi S. Water confined (H2O) n=1–10 amino acid-based ionic liquids – A DFT study on the bonding, energetics and IR spectra. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Qin M, Zhong F, Sun Y, Tan X, Hu K, Zhang H, Kong M, Wang G, Zhuang L. Effect of cation substituent of dodecanesulfate-based anionic surface active ionic liquids on micellization: Experimental and theoretical studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Bystrov SS, Matveev VV, Egorov AV, Chernyshev YS, Konovalov VA, Balevičius V, Chizhik VI. Translational Diffusion in a Set of Imidazolium-Based Ionic Liquids [bmim] +A - and Their Mixtures with Water. J Phys Chem B 2019; 123:9187-9197. [PMID: 31591890 DOI: 10.1021/acs.jpcb.9b06802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the development of the work (J. Phys. Chem. B 2019, 123 (10), 2362-2372), we have investigated the translational mobility in the same set of dried imidazolium-based ionic liquids (ILs) [bmim]A (A = BF4-, NO3-, TfO-, I-, Br-, and Cl-) in a wide temperature range using the NMR technique. It is shown that for the [bmim]+ cation, the temperature dependencies of product Dη do not follow the Stokes-Einstein relation for most systems studied, that is, the so-called "diffusion-viscosity decoupling" was realized. The correlation between local and translational mobility in pure IL of the [bmim][A] type was investigated using the data on NMR relaxation rates and diffusion coefficients. The most recent hypothesis of "water pockets" in mixtures of IL with water is critically discussed. Considering the totality of data in the literature and obtained here, we propose a specific model of the microstructure which may be applied up to water concentrations of 80-90 mol % (the structure of water-rich solutions is out of our current consideration). To confirm the model, molecular dynamics simulations of "IL-water" mixtures were also carried out.
Collapse
Affiliation(s)
- Sergei S Bystrov
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | - Vladimir V Matveev
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | - Andrei V Egorov
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | - Yurii S Chernyshev
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | - Vladislav A Konovalov
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | | | - Vladimir I Chizhik
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| |
Collapse
|
26
|
Kundu K, Chandra GK, Umapathy S, Kiefer J. Spectroscopic and computational insights into the ion-solvent interactions in hydrated aprotic and protic ionic liquids. Phys Chem Chem Phys 2019; 21:20791-20804. [PMID: 31513201 DOI: 10.1039/c9cp03670a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ionic liquids (ILs) and their aqueous solutions are emerging media for solving and manipulating biochemical molecules such as proteins. Unleashing the full potential however requires a detailed mechanistic understanding of how suitable protic and aprotic ILs behave in the presence of water in the first place. The present work aims at making an important step by performing a combined experimental and computational study of two selected ILs and their mixtures with water: the aprotic cholinium propionate ([Chl][Pro]) and the protic N-methyl-2-pyrrolidonium propionate ([NMP][Pro]). IR and Raman spectroscopy reveal stronger ion-solvent interactions in [Chl][Pro]-H2O systems compared to [NMP][Pro]-H2O mixtures. This can be explained by the tightly packed ion-pair associations in [NMP][Pro] comprising the protic -N+-H counterpart, which allows the establishment of highly directional and strong interionic hydrogen bonds. The spectral decomposition of the O-D stretching band into three sub-peaks showed that the protic [NMP][Pro] favors the self-association of water molecules. On the other hand, the predominant fraction of water-anion/cation aggregates exists in aprotic [Chl][Pro]. These hydrated systems can be envisaged using quantum-chemical calculations in the following way: H2O[Chl]+H2O[Pro]-H2O and H2O[NMP]+[Pro]-H2O, which implied preferable solvent-shared ion-pair (SIP) configurations for [Chl][Pro]-H2O systems, whereas the contact ion-pair (CIP) state prevails for the [NMP][Pro]-H2O systems. The latter holds even in the water-rich regime. In future work, these findings will be the basis for an understanding of the underlying principles that govern the interactions of ions with bio-molecules in aqueous solutions.
Collapse
Affiliation(s)
- Kaushik Kundu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560 012, Karnataka, India
| | - Goutam K Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560 012, Karnataka, India and Department of Physics, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560 012, Karnataka, India and Indian Institute of Science Education and Research, Bhopal Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Johannes Kiefer
- Technische Thermodynamik and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
27
|
Mora Cardozo JF, Embs JP, Benedetto A, Ballone P. Equilibrium Structure, Hydrogen Bonding, and Proton Conductivity in Half-Neutralized Diamine Ionic Liquids. J Phys Chem B 2019; 123:5608-5625. [PMID: 30875220 DOI: 10.1021/acs.jpcb.9b00890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experiments on proton conducting ionic liquids point to half-neutralized diamine-triflate salts as promising candidates for applications in power generation and energy conversion electrochemical devices. Structural and dynamical properties of the simplest among these compounds are investigated by a combination of density functional theory (DFT) and molecular dynamics (MD) simulations based on an empirical force field. Three different cations have been considered, consisting of a pair of amine-ammonium terminations joined by a short aliphatic segment -(CH2) n- with n = 2, 3, and 4. First, the ground state structure, vibrational eigenstates, and hydrogen-bonding properties of single ions, neutral ion pairs, small neutral aggregates of up to eight ions, and molecularly thin hydrogen bonded wires have been investigated by DFT computations. Second, structural and dynamical properties of homogeneous liquid and amorphous phases are investigated by MD simulations over the temperature range of 200 ≤ T ≤ 440 K. Structure factors, radial distribution functions, diffusion coefficient, and electrical conductivity are computed and discussed, highlighting the inherent structural heterogeneity of these compounds. The core investigation, however, is the characterization of connected paths consisting of cation chains that could support proton transport via a Grotthuss-type mechanism. Since simulations are carried out using a force field of fixed bonding topology, this analysis is based on the equilibrium structure only, using geometrical criteria to identify potential paths for proton conduction. Paths of connected cations can reach a length of 80 cations and 30 Å, provided that bridging oxygen atoms from triflate anions are taken into account. The effects of water contamination at 1% weight concentration on the structure, dynamics, and paths for proton transport are discussed.
Collapse
Affiliation(s)
- Juan F Mora Cardozo
- Laboratory for Neutron Scattering and Imaging , Paul Scherrer Institute , Villigen PSI, Villigen 5232 , Switzerland
| | - J P Embs
- Laboratory for Neutron Scattering and Imaging , Paul Scherrer Institute , Villigen PSI, Villigen 5232 , Switzerland
| | - A Benedetto
- Laboratory for Neutron Scattering and Imaging , Paul Scherrer Institute , Villigen PSI, Villigen 5232 , Switzerland.,Department of Sciences , University of Roma Tre , Via della Vasca Navale 84 , 00146 Rome , Italy
| | - P Ballone
- Italian Institute of Technology , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
28
|
Tanner EEL, Piston KM, Ma H, Ibsen KN, Nangia S, Mitragotri S. The Influence of Water on Choline-Based Ionic Liquids. ACS Biomater Sci Eng 2019; 5:3645-3653. [DOI: 10.1021/acsbiomaterials.9b00243] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eden E. L. Tanner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Kathryn M. Piston
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, New York 13244, United States
| | - Huilin Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, New York 13244, United States
| | - Kelly N. Ibsen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, New York 13244, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|