Alberini G, Benfenati F, Maragliano L. Structural Mechanism of ω-Currents in a Mutated Kv7.2 Voltage Sensor Domain from Molecular Dynamics Simulations.
J Chem Inf Model 2021;
61:1354-1367. [PMID:
33570938 PMCID:
PMC8023575 DOI:
10.1021/acs.jcim.0c01407]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Activation of voltage-gated
ion channels is regulated by conformational
changes of the voltage sensor domains (VSDs), four water- and ion-impermeable
modules peripheral to the central, permeable pore domain. Anomalous
currents, defined as ω-currents, have been recorded in response
to mutations of residues on the VSD S4 helix and associated with ion
fluxes through the VSDs. In humans, gene defects in the potassium
channel Kv7.2 result in a broad range of epileptic disorders, from
benign neonatal seizures to severe epileptic encephalopathies. Experimental
evidence suggests that the R207Q mutation in S4, associated with peripheral
nerve hyperexcitability, induces ω-currents at depolarized potentials,
but the fine structural details are still elusive. In this work, we
use atom-detailed molecular dynamics simulations and a refined model
structure of the Kv7.2 VSD in the active conformation in a membrane/water
environment to study the effect of R207Q and four additional mutations
of proven clinical importance. Our results demonstrate that the R207Q
mutant shows the most pronounced increase of hydration in the internal
VSD cavity, a feature favoring the occurrence of ω-currents.
Free energy and kinetics calculations of sodium permeation through
the native and mutated VSD indicate as more favorable the formation
of a cationic current in the latter. Overall, our simulations establish
a mechanistic linkage between genetic variations and their physiological
outcome, by providing a computational description that includes both
thermodynamic and kinetic features of ion permeation associated with
ω-currents.
Collapse