1
|
Oyeniyi EA, Sorgi CA, Gardinassi LG, Azevedo LF, Adeyemi JA, Omotoso OT, Faccioli LH, Greggi Antunes LM, Barbosa F. Phospholipids modifications, genotoxic and anticholinesterase effects of pepper fruit (Dennettia tripetala G. Baker) extract in Swiss mice. Food Chem Toxicol 2022; 165:113189. [PMID: 35636641 DOI: 10.1016/j.fct.2022.113189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
The toxicity of D. tripetala fruit extract to mice was investigated using data obtained from lipidomic analyses, comet and Acetylcholinesterase (AChE) assays. Mice (n = 8) were exposed for 30 days via oral gavage to vehicle (5% Tween 80) (negative control), D. tripetala extract (100, 200 and 400 mg/kg) and 40 mg/kg methyl methanesulfonate (MMS) (positive control). The profile of compounds in the fruit extract was analyzed using gas chromatography-mass spectrometry. Out of the total of 32 compounds identified, considerable amount of established insecticidal compounds such as 2-phenylnitroethane, cis-vaccenic acid, linalool and linoleic acid were detected. Fruit extract did not induce DNA damage relative to negative control. Percentage gain in body weights differed significantly across the four weeks. Significantly highest and lowest brain AChE activity was observed in animals exposed to 200 and 400 mg/kg D. tripetala, respectively. Fruit extract modulated the brain phospholipid profile due to significant fold changes of 48 lipid species out of the total of 280 lipid species. High number of differentially expressed phosphatidylcholine (PC) species and significant levels of phosphatidylethanolamine (PE) at 400 mg/kg suggests that activation of inflammation and methylation pathways are the most plausible mechanisms of D. tripetala toxicity to mouse brain tissue.
Collapse
Affiliation(s)
- Emmanuel Ayobami Oyeniyi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil; Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria; Department of Zoology and Environmental Biology, Faculty of Sciences, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria.
| | - Carlos Arterio Sorgi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lara Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Joseph Adewuyi Adeyemi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil; Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Olumuyiwa Temitope Omotoso
- Department of Zoology and Environmental Biology, Faculty of Sciences, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Lucia Helena Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lusania Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café S/nº, Ribeirão Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
2
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
3
|
Perczyk P, Wójcik A, Hachlica N, Wydro P, Broniatowski M. The composition of phospholipid model bacterial membranes determines their endurance to secretory phospholipase A2 attack – The role of cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183239. [DOI: 10.1016/j.bbamem.2020.183239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
|
4
|
Palyzová A, Marešová H, Novák J, Zahradník J, Řezanka T. Effect of the anti-inflammatory drug diclofenac on lipid composition of bacterial strain Raoultella sp. KDF8. Folia Microbiol (Praha) 2020; 65:763-773. [PMID: 32318987 DOI: 10.1007/s12223-020-00790-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023]
Abstract
The strain Raoultella sp. KDF8 was cultivated on three sources of carbon and energy, glycerol, ethanol and diclofenac, for periods of time ranging from 24 to 72 h. Using thin-layer chromatography, nine classes of phospholipids were detected and the amount of phosphatidylethanolamine (PtdEtn) decreased with increasing cultivation time. Conversely, the ratio of phospholipids having three or four acyls (acyl-phosphatidylglycerol (APtdGro), N-acyl-PtdEtn (NAPtdEtn) and cardiolipin (Ptd2Gro) increased during cultivation. GC-MS analysis showed that the percentage of fatty acids containing a cyclopropane ring increased almost tenfold whereas the amount of fatty acids bearing even-numbered chains dropped to less than one-third after 24 h and 72 h in cultures on glycerol and diclofenac, respectively. Shotgun analysis showed significant changes in the representation of molecular species of phospholipids. For instance, there was a 36-fold change in the ratio of 16:1/16:1/16:1-APtdGro to c17:0/c17:0/c17:0-APtdGro and a 12-fold ratio change for 16:1/16:1/16:1-NAPtdEtn to c17:0/c17:0/c17:0-NAPtdEtn; the Ptd2Gro ratio of 16:1 to c17:0 acids equalled 1750. Our results show that the bacteria overcome destabilization of the inner cytoplasmic cell membrane and a bacterial outer membrane by altering the geometric arrangement of acyl chains, i.e. switching from monounsaturated to cyclopropane fatty acids (16:1 versus c17:0).
Collapse
Affiliation(s)
- Andrea Palyzová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Helena Marešová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jiří Zahradník
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
5
|
Argudo PG, Contreras-Montoya R, Álvarez de Cienfuegos L, Martín-Romero MT, Camacho L, Giner-Casares JJ. Optimization of Amino Acid Sequence of Fmoc-Dipeptides for Interaction with Lipid Membranes. J Phys Chem B 2019; 123:3721-3730. [DOI: 10.1021/acs.jpcb.9b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pablo G. Argudo
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Rafael Contreras-Montoya
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada (UGR), C. U. Fuentenueva, Granada E-18071, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada (UGR), C. U. Fuentenueva, Granada E-18071, Spain
| | - María T. Martín-Romero
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Luis Camacho
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| | - Juan J. Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN, Facultad de Ciencias, Universidad de Córdoba (UCO), Campus de Rabanales, Ed. Marie Curie, E-14071 Córdoba, Spain
| |
Collapse
|