1
|
Kim J, Lee HS, Kim CH. Observation of Coherent Symmetry-Breaking Vibration by Polarization-Dependent Femtosecond Spectroscopy. J Phys Chem B 2024; 128:1053-1060. [PMID: 38253009 DOI: 10.1021/acs.jpcb.3c08151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding photoinduced chemical reactions beyond the Born-Oppenheimer paradigm requires a comprehensive examination of vibronic interactions. Although femtosecond studies have unveiled the influence of vibrational modes strongly coupled to ultrafast intramolecular reactions in the excited state, they often lack direct observations of how vibrations modulate electronic properties due to the rapid disappearance of reactants. To address this gap, our research investigates the dynamics of photoexcited molecules that do not react. Specifically, we focus on the coherent librational motion of molecular transition dipole moments, discovering that the coherent libration primarily originates from symmetry-breaking components in vibronically excited vibrational modes. Symmetry breaking motion can significantly impact the excited-state dynamics of highly symmetric molecules, potentially leading to nonadiabatic transitions. In essence, the data analysis framework introduced in this study can be harnessed to uncover potential reactivity in photoexcited molecules, further enhancing our understanding of the mechanisms governing these reactions.
Collapse
Affiliation(s)
- JunWoo Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Smith DR, Shivkumar S, Field J, Wilson JW, Rigneault H, Bartels RA. Nearly degenerate two-color impulsive coherent Raman hyperspectral imaging. OPTICS LETTERS 2022; 47:5841-5844. [PMID: 37219129 DOI: 10.1364/ol.467970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 05/24/2023]
Abstract
Impulsive stimulated Raman scattering (ISRS) is a robust technique for studying low frequency (<300 cm-1) Raman vibrational modes, but ISRS has faced difficulty in translation to an imaging modality. A primary challenge is the separation of the pump and probe pulses. Here we introduce and demonstrate a simple strategy for ISRS spectroscopy and hyperspectral imaging that uses complementary steep edge spectral filters to separate the probe beam detection from the pump and enables simple ISRS microscopy with a single-color ultrafast laser source. ISRS spectra are obtained that span from the fingerprint region down to <50 cm-1 vibrational modes. Hyperspectral imaging and polarization-dependent Raman spectra are also demonstrated.
Collapse
|
3
|
Han NS, Kim J, Yoon TH, Cho M. Time-resolved spectroscopy of thioflavin T solutions: Asynchronous optical sampling method with two frequency-upconverted mode-locked lasers. J Chem Phys 2022; 156:064201. [DOI: 10.1063/5.0077756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Noh Soo Han
- Korea University, Korea, Republic of (South Korea)
| | - JunWoo Kim
- Department of Chemistry, Princeton University, United States of America
| | - Tai Hyun Yoon
- Department of Physics, Korea University, Korea, Republic of (South Korea)
| | - Minhaeng Cho
- Chemistry, Korea University, Korea, Republic of (South Korea)
| |
Collapse
|
4
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
5
|
Abstract
Coherent multidimensional spectroscopy has been widely used to study the structure and dynamics of chemical and biological systems. Each ultrashort pulse from a single mode-locked laser is split into multiple pulses by beam splitters. Their arrival times at a given molecular sample are controlled with mechanical time-delay generators for time-resolved measurements of molecular responses. Such nonlinear vibrational, electronic, or vibrational-electronic spectroscopy can now be carried out with multiple mode-locked lasers with highly stabilized repetition and sometimes carrier-envelope-offset frequencies. By precisely controlling the repetition frequencies of multiple mode-locked lasers, one can achieve automatic delay time scanning, known as asynchronous optical sampling, to investigate various relaxation processes associated with photochemical or photobiological phenomena at one sweep in time. In this Perspective, the current developments and applications of multiple mode-locked laser-based techniques to time-resolved nonlinear spectroscopy of chromophores in condensed phases are discussed. The author's perspective on this approach is also presented.
Collapse
Affiliation(s)
- Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Han NS, Kim J, Yoon TH, Cho M. Broadband Infrared Spectroscopy of Molecules in Solutions with Two Intrapulse Difference-Frequency-Generated Mid-Infrared Frequency Combs. J Phys Chem B 2021; 125:307-316. [PMID: 33325228 DOI: 10.1021/acs.jpcb.0c09595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mid-infrared (mid-IR) spectroscopy is an incisive tool for studying structures and dynamics of complicated molecules in condensed phases. Developing a compact and broadband mid-IR spectrometer has thus been a long-standing challenge. Here, we show that a highly coherent and broadband mid-IR frequency comb can be generated by using an intrapulse difference-frequency-generation with a train of pulses from a few-cycle pulse Ti:sapphire oscillator. By tightly focusing the oscillator output beam into a single-pass, fan-out-type periodically poled lithium niobate crystal and tilting the orientation of the crystal, we show that a mid-IR frequency comb with more than an octave spectral bandwidth from 1550 cm-1 (46 THz) to 3650 cm-1 (110 THz) and vanishing carrier-envelope-offset phase can be generated. Using two coherent mid-IR frequency combs with different repetition frequencies, we demonstrate that a broadband mid-IR dual-frequency comb spectroscopy of aromatic compounds or amino acids in solutions is feasible. We thus anticipate that researchers will find our mid-IR frequency combs useful for developing ultrafast and broadband linear and nonlinear IR spectroscopy of chemically reactive or biologically important molecules in condensed phases.
Collapse
Affiliation(s)
- Noh Soo Han
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - JunWoo Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Tai Hyun Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea.,Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea.,Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Kim J, Jeon J, Yoon TH, Cho M. Two-dimensional electronic spectroscopy of bacteriochlorophyll a with synchronized dual mode-locked lasers. Nat Commun 2020; 11:6029. [PMID: 33247112 PMCID: PMC7699642 DOI: 10.1038/s41467-020-19912-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
How atoms and electrons in a molecule move during a chemical reaction and how rapidly energy is transferred to or from the surroundings can be studied with flashes of laser light. However, despite prolonged efforts to develop various coherent spectroscopic techniques, the lack of an all-encompassing method capable of both femtosecond time resolution and nanosecond relaxation measurement has hampered various applications of studying correlated electron dynamics and vibrational coherences in functional materials and biological systems. Here, we demonstrate that two broadband (>300 nm) synchronized mode-locked lasers enable two-dimensional electronic spectroscopy (2DES) study of chromophores such as bacteriochlorophyll a in condensed phases to measure both high-resolution coherent vibrational spectrum and nanosecond electronic relaxation. We thus anticipate that the dual mode-locked laser-based 2DES developed and demonstrated here would be of use for unveiling the correlation between the quantum coherence and exciton dynamics in light-harvesting protein complexes and semiconducting materials.
Collapse
Affiliation(s)
- JunWoo Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, 02841, Republic of Korea.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, 02841, Republic of Korea
| | - Tai Hyun Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, 02841, Republic of Korea. .,Department of Physics, Korea University, Seoul, 02841, Republic of Korea.
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, 02841, Republic of Korea. .,Deparment of Chemistry, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Kim J, Yoon TH, Cho M. Time-Resolved Impulsive Stimulated Raman Spectroscopy with Synchronized Triple Mode-Locked Lasers. J Phys Chem Lett 2020; 11:2864-2869. [PMID: 32212699 DOI: 10.1021/acs.jpclett.0c00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A complete understanding of a photochemical reaction dynamics begins with real-time measurements of both electronic and vibrational structures of photoexcited molecules. Time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS) with femtosecond actinic pump, Raman pump, and Raman probe pulses is one of the incisive techniques enabling one to investigate the structural changes of photoexcited molecules. Herein, we demonstrate that such femtosecond TR-ISRS is feasible with synchronized triple mode-locked lasers without using any time-delay devices. Taking advantage of precise control of the three repetition rates independently, we could achieve automatic scanning of two delay times between the three pulses, which makes both rapid data acquisition and wide dynamic range measurement of the fifth-order TR-ISRS signal achievable. We thus anticipate that the present triple mode-locked laser-based TR-ISRS technique will be of critical use for long-term monitoring of photochemical reaction dynamics in condensed phases and biological systems.
Collapse
Affiliation(s)
- JunWoo Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Tai Hyun Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
|