1
|
Yin D, Xiong R, Yang Z, Feng J, Liu W, Li S, Li M, Ruan H, Li J, Li L, Lai L, Guo X. Mapping Full Conformational Transition Dynamics of Intrinsically Disordered Proteins Using a Single-Molecule Nanocircuit. ACS NANO 2024. [PMID: 39276130 DOI: 10.1021/acsnano.4c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Intrinsically disordered proteins (IDPs) are emerging therapeutic targets for human diseases. However, probing their transient conformations remains challenging because of conformational heterogeneity. To address this problem, we developed a biosensor using a point-functionalized silicon nanowire (SiNW) that allows for real-time sampling of single-molecule dynamics. A single IDP, N-terminal transactivation domain of tumor suppressor protein p53 (p53TAD1), was covalently conjugated to the SiNW through chemical engineering, and its conformational transition dynamics was characterized as current fluctuations. Furthermore, when a globular protein ligand in solution bound to the targeted p53TAD1, protein-protein interactions could be unambiguously distinguished from large-amplitude current signals. These proof-of-concept experiments enable semiquantitative, realistic characterization of the structural properties of IDPs and constitute the basis for developing a valuable tool for protein profiling and drug discovery in the future.
Collapse
Affiliation(s)
- Dongbao Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Ruoyao Xiong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Zhiheng Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Jianfei Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Wenzhe Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Shiyun Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Hao Ruan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
- National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Okamoto K, Sako Y. Two Closed Conformations of CRAF Require the 14-3-3 Binding Motifs and Cysteine-Rich Domain to be Intact in Live Cells. J Mol Biol 2023; 435:167989. [PMID: 36736888 DOI: 10.1016/j.jmb.2023.167989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
The protein rapidly accelerated fibrosarcoma (RAF) is a kinase downstream of the membrane protein RAS in the cellular signal transduction system. In the structure of RAF, the N- and C-terminus domains are connected with a flexible linker. The open/close dynamics and dimerization of RAF are thought to regulate its activity, although the details of these conformations are unknown, especially in live cells. In this work, we used alternating laser excitation to measure cytosolic CRAF in live HeLa cells and obtained single-molecule Förster resonance energy transfer (smFRET) distributions of the structural states. We compared the results for wild-type (WT)-CRAF before and after epidermal growth factor (EGF) stimulation, with mutations of the 14-3-3 binding sites and cysteine-rich domain, and an N-terminus truncation. The smFRET distributions of full-length CRAFs were analyzed by global fitting with three beta distributions. Our results suggested that a 14-3-3 dimer bound to two sites on a single CRAF molecule and induced the formation of the autoinhibitory closed conformation. There were two closed conformations, which the majority of WT-CRAF adopted. These two conformations showed different responsiveness to EGF stimulation.
Collapse
Affiliation(s)
- Kenji Okamoto
- Cellular Informatics Laboratory, Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Nakagawa Y, Shen HCH, Komi Y, Sugiyama S, Kurinomaru T, Tomabechi Y, Krayukhina E, Okamoto K, Yokoyama T, Shirouzu M, Uchiyama S, Inaba M, Niwa T, Sako Y, Taguchi H, Tanaka M. Amyloid conformation-dependent disaggregation in a reconstituted yeast prion system. Nat Chem Biol 2022; 18:321-331. [PMID: 35177839 DOI: 10.1038/s41589-021-00951-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/23/2021] [Indexed: 01/17/2023]
Abstract
Disaggregation of amyloid fibrils is a fundamental biological process required for amyloid propagation. However, due to the lack of experimental systems, the molecular mechanism of how amyloid is disaggregated by cellular factors remains poorly understood. Here, we established a robust in vitro reconstituted system of yeast prion propagation and found that heat-shock protein 104 (Hsp104), Ssa1 and Sis1 chaperones are essential for efficient disaggregation of Sup35 amyloid. Real-time imaging of single-molecule fluorescence coupled with the reconstitution system revealed that amyloid disaggregation is achieved by ordered, timely binding of the chaperones to amyloid. Remarkably, we uncovered two distinct prion strain conformation-dependent modes of disaggregation, fragmentation and dissolution. We characterized distinct chaperone dynamics in each mode and found that transient, repeated binding of Hsp104 to the same site of amyloid results in fragmentation. These findings provide a physical foundation for otherwise puzzling in vivo observations and for therapeutic development for amyloid-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiko Nakagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | - Howard C-H Shen
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Komi
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | - Shinju Sugiyama
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Yuri Tomabechi
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Kenji Okamoto
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Susumu Uchiyama
- Research Department, U-Medico Inc., Suita, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | - Megumi Inaba
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan. .,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
4
|
Pinet L, Assrir N, van Heijenoort C. Expanding the Disorder-Function Paradigm in the C-Terminal Tails of Erbbs. Biomolecules 2021; 11:1690. [PMID: 34827688 PMCID: PMC8615588 DOI: 10.3390/biom11111690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
ErbBs are receptor tyrosine kinases involved not only in development, but also in a wide variety of diseases, particularly cancer. Their extracellular, transmembrane, juxtamembrane, and kinase folded domains were described extensively over the past 20 years, structurally and functionally. However, their whole C-terminal tails (CTs) following the kinase domain were only described at atomic resolution in the last 4 years. They were shown to be intrinsically disordered. The CTs are known to be tyrosine-phosphorylated when the activated homo- or hetero-dimers of ErbBs are formed. Their phosphorylation triggers interaction with phosphotyrosine binding (PTB) or Src Homology 2 (SH2) domains and activates several signaling pathways controling cellular motility, proliferation, adhesion, and apoptosis. Beyond this passive role of phosphorylated domain and site display for partners, recent structural and function studies unveiled active roles in regulation of phosphorylation and interaction: the CT regulates activity of the kinase domain; different phosphorylation states have different compaction levels, potentially modulating the succession of phosphorylation events; and prolines have an important role in structure, dynamics, and possibly regulatory interactions. Here, we review both the canonical role of the disordered CT domains of ErbBs as phosphotyrosine display domains and the recent findings that expand the known range of their regulation functions linked to specific structural and dynamic features.
Collapse
|
5
|
Shamilov R, Robinson VL, Aneskievich BJ. Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. Int J Mol Sci 2021; 22:ijms22157912. [PMID: 34360678 PMCID: PMC8348711 DOI: 10.3390/ijms22157912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal keratinocyte proteins include many with an eccentric amino acid content (compositional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profilaggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid–liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinformatic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte-specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology.
Collapse
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA;
| | - Victoria L. Robinson
- Department of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA;
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
- Correspondence: ; Tel.: +1-860-486-3053
| |
Collapse
|
6
|
Aneskievich BJ, Shamilov R, Vinogradova O. Intrinsic disorder in integral membrane proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:101-134. [PMID: 34656327 DOI: 10.1016/bs.pmbts.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The well-defined roles and specific protein-protein interactions of many integral membrane proteins (IMPs), such as those functioning as receptors for extracellular matrix proteins and soluble growth factors, easily align with considering IMP structure as a classical "lock-and-key" concept. Nevertheless, continued advances in understanding protein conformation, such as those which established the widespread existence of intrinsically disordered proteins (IDPs) and especially intrinsically disordered regions (IDRs) in otherwise three-dimensionally organized proteins, call for ongoing reevaluation of transmembrane proteins. Here, we present basic traits of IDPs and IDRs, and, for some select single-span IMPs, consider the potential functional advantages intrinsic disorder might provide and the possible conformational impact of disease-associated mutations. For transmembrane proteins in general, we highlight several investigational approaches, such as biophysical and computational methods, stressing the importance of integrating them to produce a more-complete mechanistic model of disorder-containing IMPs. These procedures, when synergized with in-cell assessments, will likely be key in translating in silico and in vitro results to improved understanding of IMP conformational flexibility in normal cell physiology as well as disease, and will help to extend their potential as therapeutic targets.
Collapse
Affiliation(s)
- Brian J Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Rambon Shamilov
- Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States.
| |
Collapse
|
7
|
Pinet L, Wang YH, Deville C, Lescop E, Guerlesquin F, Badache A, Bontems F, Morellet N, Durand D, Assrir N, van Heijenoort C. Structural and dynamic characterization of the C-terminal tail of ErbB2: Disordered but not random. Biophys J 2021; 120:1869-1882. [PMID: 33741354 DOI: 10.1016/j.bpj.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/23/2023] Open
Abstract
ErbB2 (or HER2) is a receptor tyrosine kinase overexpressed in some breast cancers and associated with poor prognosis. Treatments targeting the receptor extracellular and kinase domains have greatly improved disease outcome in the last 20 years. In parallel, the structures of these domains have been described, enabling better mechanistic understanding of the receptor function and targeted inhibition. However, the ErbB2 disordered C-terminal cytoplasmic tail (CtErbB2) remains very poorly characterized in terms of structure, dynamics, and detailed functional mechanism. Yet, it is where signal transduction is triggered via phosphorylation of tyrosine residues and carried out via interaction with adaptor proteins. Here, we report the first description, to our knowledge, of the ErbB2 disordered tail at atomic resolution using NMR, complemented by small-angle x-ray scattering. We show that although no part of CtErbB2 has any fully populated secondary or tertiary structure, it contains several transient α-helices and numerous transient polyproline II helices, populated up to 20 and 40%, respectively, and low but significant compaction. The presence of some structural elements suggests, along the lines of the results obtained for EGFR (ErbB1), that they may have a functional role in ErbB2's autoregulation processes. In addition, the transient formation of polyproline II helices is compliant with previously suggested interactions with SH3 domains. All in all, our in-depth structural study opens perspectives in the mechanistic understanding of ErbB2.
Collapse
Affiliation(s)
- Louise Pinet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ying-Hui Wang
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; SGS Taiwan LTD, New Taipei City, Taiwan
| | - Célia Deville
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; IGBMC, University of Strasbourg, CNRS UMR, Illkirch, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Françoise Guerlesquin
- LISM, Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille University, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Nelly Morellet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dominique Durand
- I2BC, Université Paris-Saclay, CNRS UMR 9198, Gif-sur-Yvette, France
| | - Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine van Heijenoort
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Regmi R, Srinivasan S, Latham AP, Kukshal V, Cui W, Zhang B, Bose R, Schlau-Cohen GS. Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor. J Phys Chem Lett 2020; 11:10037-10044. [PMID: 33179922 PMCID: PMC8063277 DOI: 10.1021/acs.jpclett.0c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.
Collapse
Affiliation(s)
- Raju Regmi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vandna Kukshal
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ron Bose
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Nrp1 is Activated by Konjac Ceramide Binding-Induced Structural Rigidification of the a1a2 Domain. Cells 2020; 9:cells9020517. [PMID: 32102436 PMCID: PMC7072815 DOI: 10.3390/cells9020517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Konjac ceramide (kCer) is a plant-type ceramide composed of various long-chain bases and α-hydroxyl fatty acids. The presence of d4t,8t-sphingadienine is essential for semaphorin 3A (Sema3A)-like activity. Herein, we examined the three neuropilin 1 (Nrp1) domains (a1a2, b1b2, or c), and found that a1a2 binds to d4t,8t-kCer and possesses Sema3A-like activity. kCer binds to Nrp1 with a weak affinity of μM dissociation constant (Kd). We wondered whether bovine serum albumin could influence the ligand–receptor interaction that a1a2 has with a single high affinity binding site for kCer (Kd in nM range). In the present study we demonstrated the influence of bovine serum albumin. Thermal denaturation indicates that the a1a2 domain may include intrinsically disordered region (IDR)-like flexibility. A potential interaction site on the a1 module was explored by molecular docking, which revealed a possible Nrp1 activation mechanism, in which kCer binds to Site A close to the Sema3A-binding region of the a1a2 domain. The a1 module then accesses a2 as the IDR-like flexibility becomes ordered via kCer-induced protein rigidity of a1a2. This induces intramolecular interaction between a1 and a2 through a slight change in protein secondary structure.
Collapse
|
10
|
In-cell single-molecule FRET measurements reveal three conformational state changes in RAF protein. Biochim Biophys Acta Gen Subj 2019; 1864:129358. [PMID: 31071411 DOI: 10.1016/j.bbagen.2019.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The structures of proteins are intimately related to their functions. Significant efforts have been dedicated to the structural investigation of proteins, mainly those of purified proteins in in vitro environments. Proteins function in living cells and thus protein structures must be regulated by interactions with various molecules, some of which participate in reaction networks, depending on the states, conditions, or actions of the cell. Therefore, it is very important to understand the structural behavior of proteins in living cells. METHODS Single-molecule Förster resonance energy transfer (smFRET) measurements were conducted using the alternative laser excitation (ALEX) technique. smFRET distributions of cytosolic Rapidly Accelerated Fibrosarcoma (RAF) proteins in living HeLa cells were obtained with exclusion of the negative effects of photobleached fluorophores and incompletely labeled proteins on smFRET. RESULTS smFRET histograms of wildtype (wt) RAF in live cells exhibited two major peaks, whereas that of the S621A mutant, which has been thought to have an expanded structure, was almost single-peaked. A population shift involving the peaks for wt RAF was detected upon epidermal growth factor stimulation. Spontaneous transitions between the conformational states corresponding to the two peaks were also detected using the FRET-two-channel kernel-based density distribution estimator method in comparison to static double-stranded DNA samples. CONCLUSIONS Cytosolic CRAF has at least three conformational states; in addition to the closed and open forms, the fully-open form was distinctly specified. Based on the results, we propose a speculative structural model for CRAF. GENERAL SIGNIFICANCE Structural distribution and changes to proteins in live cells as a result of intracellular interactions were successfully identified. smFRET using ALEX is applicable to any other cytosolic proteins.
Collapse
|