1
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2024:10.1038/s41576-024-00759-1. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
3
|
Haase MAB, Lazar-Stefanita L, Ólafsson G, Wudzinska A, Shen MJ, Truong DM, Boeke JD. macroH2A1 drives nucleosome dephasing and genome instability in histone humanized yeast. Cell Rep 2024; 43:114472. [PMID: 38990716 DOI: 10.1016/j.celrep.2024.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/15/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
In addition to replicative histones, eukaryotic genomes encode a repertoire of non-replicative variant histones, providing additional layers of structural and epigenetic regulation. Here, we systematically replace individual replicative human histones with non-replicative human variant histones using a histone replacement system in yeast. We show that variants H2A.J, TsH2B, and H3.5 complement their respective replicative counterparts. However, macroH2A1 fails to complement, and its overexpression is toxic in yeast, negatively interacting with yeast's native histones and kinetochore genes. To isolate yeast with macroH2A1 chromatin, we uncouple the effects of its macro and histone fold domains, revealing that both domains suffice to override native nucleosome positioning. Furthermore, both uncoupled constructs of macroH2A1 exhibit lower nucleosome occupancy, decreased short-range chromatin interactions (<20 kb), disrupted centromeric clustering, and increased chromosome instability. Our observations demonstrate that lack of a canonical histone H2A dramatically alters chromatin organization in yeast, leading to genome instability and substantial fitness defects.
Collapse
Affiliation(s)
- Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Michael J Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David M Truong
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| |
Collapse
|
4
|
Lai PM, Chan KM. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. Int J Mol Sci 2024; 25:3144. [PMID: 38542118 PMCID: PMC10969971 DOI: 10.3390/ijms25063144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 07/16/2024] Open
Abstract
Histones are nuclear proteins essential for packaging genomic DNA and epigenetic gene regulation. Paralogs that can substitute core histones (H2A, H2B, H3, and H4), named histone variants, are constitutively expressed in a replication-independent manner throughout the cell cycle. With specific chaperones, they can be incorporated to chromatin to modify nucleosome stability by modulating interactions with nucleosomal DNA. This allows the regulation of essential fundamental cellular processes for instance, DNA damage repair, chromosomal segregation, and transcriptional regulation. Among all the histone families, histone H2A family has the largest number of histone variants reported to date. Each H2A variant has multiple functions apart from their primary role and some, even be further specialized to perform additional tasks in distinct lineages, such as testis specific shortH2A (sH2A). In the past decades, the discoveries of genetic alterations and mutations in genes encoding H2A variants in cancer had revealed variants' potentiality in driving carcinogenesis. In addition, there is growing evidence that H2A variants may act as novel prognostic indicators or biomarkers for both early cancer detection and therapeutic treatments. Nevertheless, no studies have ever concluded all identified variants in a single report. Here, in this review, we summarize the respective functions for all the 19 mammalian H2A variants and their roles in cancer biology whilst potentiality being used in clinical setting.
Collapse
Affiliation(s)
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
5
|
Haase MAB, Lazar-Stefanita L, Ólafsson G, Wudzinska A, Shen MJ, Truong DM, Boeke JD. Human macroH2A1 drives nucleosome dephasing and genome instability in histone-humanized yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.538725. [PMID: 37205538 PMCID: PMC10187286 DOI: 10.1101/2023.05.06.538725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In addition to replicative histones, eukaryotic genomes encode a repertoire of non-replicative variant histones providing additional layers of structural and epigenetic regulation. Here, we systematically replaced individual replicative human histones with non-replicative human variant histones using a histone replacement system in yeast. Variants H2A.J, TsH2B, and H3.5 complemented for their respective replicative counterparts. However, macroH2A1 failed to complement and its expression was toxic in yeast, negatively interacting with native yeast histones and kinetochore genes. To isolate yeast with "macroH2A1 chromatin" we decoupled the effects of its macro and histone fold domains, which revealed that both domains sufficed to override native yeast nucleosome positioning. Furthermore, both modified constructs of macroH2A1 exhibited lower nucleosome occupancy that correlated with decreased short-range chromatin interactions (<20 Kb), disrupted centromeric clustering, and increased chromosome instability. While supporting viability, macroH2A1 dramatically alters chromatin organization in yeast, leading to genome instability and massive fitness defects.
Collapse
Affiliation(s)
- Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, 10016, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - Michael J. Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
| | - David M. Truong
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 430 East 29th Street, New York, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| |
Collapse
|
6
|
Arantes PR, Patel AC, Palermo G. Emerging Methods and Applications to Decrypt Allostery in Proteins and Nucleic Acids. J Mol Biol 2022; 434:167518. [PMID: 35240127 PMCID: PMC9398933 DOI: 10.1016/j.jmb.2022.167518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
Many large protein-nucleic acid complexes exhibit allosteric regulation. In these systems, the propagation of the allosteric signaling is strongly coupled to conformational dynamics and catalytic function, challenging state-of-the-art analytical methods. Here, we review established and innovative approaches used to elucidate allosteric mechanisms in these complexes. Specifically, we report network models derived from graph theory and centrality analyses in combination with molecular dynamics (MD) simulations, introducing novel schemes that implement the synergistic use of graph theory with enhanced simulations methods and ab-initio MD. Accelerated MD simulations are used to construct "enhanced network models", describing the allosteric response over long timescales and capturing the relation between allostery and conformational changes. "Ab-initio network models" combine graph theory with ab-initio MD and quantum mechanics/molecular mechanics (QM/MM) simulations to describe the allosteric regulation of catalysis by following the step-by-step dynamics of biochemical reactions. This approach characterizes how the allosteric regulation changes from reactants to products and how it affects the transition state, revealing a tense-to-relaxed allosteric regulation along the chemical step. Allosteric models and applications are showcased for three paradigmatic examples of allostery in protein-nucleic acid complexes: (i) the nucleosome core particle, (ii) the CRISPR-Cas9 genome editing system and (iii) the spliceosome. These methods and applications create innovative protocols to determine allosteric mechanisms in protein-nucleic acid complexes that show tremendous promise for medicine and bioengineering.
Collapse
Affiliation(s)
- Pablo R Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States. https://twitter.com/pablitoarantes
| | - Amun C Patel
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States; Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States.
| |
Collapse
|
7
|
H2A-H2B Histone Dimer Plasticity and Its Functional Implications. Cells 2022; 11:cells11182837. [PMID: 36139412 PMCID: PMC9496766 DOI: 10.3390/cells11182837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
The protein core of the nucleosome is composed of an H3-H4 histone tetramer and two H2A-H2B histone dimers. The tetramer organizes the central 60 DNA bp, while H2A-H2B dimers lock the flanking DNA segments. Being positioned at the sides of the nucleosome, H2A-H2B dimers stabilize the overall structure of the nucleosome and modulate its dynamics, such as DNA unwrapping, sliding, etc. Such modulation at the epigenetic level is achieved through post-translational modifications and the incorporation of histone variants. However, the detailed connection between the sequence of H2A-H2B histones and their structure, dynamics and implications for nucleosome functioning remains elusive. In this work, we present a detailed study of H2A-H2B dimer dynamics in the free form and in the context of nucleosomes via atomistic molecular dynamics simulations (based on X. laevis histones). We supplement simulation results by comparative analysis of information in the structural databases. Particularly, we describe a major dynamical mode corresponding to the bending movement of the longest H2A and H2B α-helices. This overall bending dynamics of the H2A-H2B dimer were found to be modulated by its interactions with DNA, H3-H4 tetramer, the presence of DNA twist-defects with nucleosomal DNA and the amino acid sequence of histones. Taken together, our results shed new light on the dynamical mechanisms of nucleosome functioning, such as nucleosome sliding, DNA-unwrapping and their epigenetic modulation.
Collapse
|
8
|
Phillips EO, Gunjan A. Histone Variants: The Unsung Guardians of the Genome. DNA Repair (Amst) 2022; 112:103301. [DOI: 10.1016/j.dnarep.2022.103301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/15/2022]
|
9
|
Histone dynamics mediate DNA unwrapping and sliding in nucleosomes. Nat Commun 2021; 12:2387. [PMID: 33888707 PMCID: PMC8062685 DOI: 10.1038/s41467-021-22636-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleosomes are elementary building blocks of chromatin in eukaryotes. They tightly wrap ∼147 DNA base pairs around an octamer of histone proteins. How nucleosome structural dynamics affect genome functioning is not completely clear. Here we report all-atom molecular dynamics simulations of nucleosome core particles at a timescale of 15 microseconds. At this timescale, functional modes of nucleosome dynamics such as spontaneous nucleosomal DNA breathing, unwrapping, twisting, and sliding were observed. We identified atomistic mechanisms of these processes by analyzing the accompanying structural rearrangements of the histone octamer and histone-DNA contacts. Octamer dynamics and plasticity were found to enable DNA unwrapping and sliding. Through multi-scale modeling, we showed that nucleosomal DNA dynamics contribute to significant conformational variability of the chromatin fiber at the supranucleosomal level. Our study further supports mechanistic coupling between fine details of histone dynamics and chromatin functioning, provides a framework for understanding the effects of various chromatin modifications.
Collapse
|
10
|
Abstract
Eukaryotic nucleosomes organize chromatin by wrapping 147 bp of DNA around a histone core particle comprising two molecules each of histone H2A, H2B, H3 and H4. The DNA entering and exiting the particle may be bound by the linker histone H1. Whereas deposition of bulk histones is confined to S-phase, paralogs of the common histones, known as histone variants, are available to carry out functions throughout the cell cycle and accumulate in post-mitotic cells. Histone variants confer different structural properties on nucleosomes by wrapping more or less DNA or by altering nucleosome stability. They carry out specialized functions in DNA repair, chromosome segregation and regulation of transcription initiation, or perform tissue-specific roles. In this Cell Science at a Glance article and the accompanying poster, we briefly examine new insights into histone origins and discuss variants from each of the histone families, focusing on how structural differences may alter their functions. Summary: Histone variants change the structural properties of nucleosomes by wrapping more or less DNA, altering nucleosome stability or carrying out specialized functions.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| |
Collapse
|
11
|
Bowerman S, Wereszczynski J, Luger K. Archaeal chromatin 'slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways. eLife 2021; 10:65587. [PMID: 33650488 PMCID: PMC7990501 DOI: 10.7554/elife.65587] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Eukaryotes and many archaea package their DNA with histones. While the four eukaryotic histones wrap ~147 DNA base pairs into nucleosomes, archaeal histones form ‘nucleosome-like’ complexes that continuously wind between 60 and 500 base pairs of DNA (‘archaeasomes’), suggested by crystal contacts and analysis of cellular chromatin. Solution structures of large archaeasomes (>90 DNA base pairs) have never been directly observed. Here, we utilize molecular dynamics simulations, analytical ultracentrifugation, and cryoEM to structurally characterize the solution state of archaeasomes on longer DNA. Simulations reveal dynamics of increased accessibility without disruption of DNA-binding or tetramerization interfaces. Mg2+ concentration influences compaction, and cryoEM densities illustrate that DNA is wrapped in consecutive substates arranged 90o out-of-plane with one another. Without ATP-dependent remodelers, archaea may leverage these inherent dynamics to balance chromatin packing and accessibility. All animals, plants and fungi belong to a group of living organisms called eukaryotes. The two other groups are bacteria and archaea, which include unicellular, microscopic organisms. All three groups have genes, which are typically stored on long strands of DNA. Eukaryotes have so much DNA that they use proteins called histones to help package and organize it inside each cell. Archaea also have simplified histones that help store their DNA, and studying these proteins could reveal how eukaryotic histones first evolved. In eukaryotes, groups of eight histones form a short cylinder that organizes a small section of DNA into a structure called a nucleosome. Each cell needs hundreds of thousands of nucleosomes to arrange its DNA. Eukaryotic cells also contain other proteins that release pieces of DNA from histones so that their genetic information can be used. The histones in Archaea don’t form discrete nucleosomes, instead, they coil DNA into ‘slinky-like’ shapes. It’s still unclear how DNA packing in archaea works and how it differs from eukaryotes. Bowerman, Wereszczynski and Luger used computer simulations, biochemistry and cryo-electron microscopy to study the histones from archaea. The archaeal ‘slinky-like’ histone structures are more flexible than nucleosomes, and can open and close like clamshells. This flexibility allows the information in the genomes of Archaea to be easily accessed, so, unlike in eukaryotes, archaeal cells may not need other proteins to release the DNA from the histones. The ability to package DNA allows cells to contain many more genes, so evolving histones was a vital step in the evolution of eukaryotic life, including the appearance of animals. Archaeal histones may reflect early versions of histones in eukaryotes, and can be used to understand how DNA packing has evolved. Furthermore, a greater understanding of Archaea may help better explain their role in health and global ecosystems, and allow their use in industrial applications.
Collapse
Affiliation(s)
- Samuel Bowerman
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, United States
| | - Karolin Luger
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
12
|
Huertas J, Cojocaru V. Breaths, Twists, and Turns of Atomistic Nucleosomes. J Mol Biol 2020; 433:166744. [PMID: 33309853 DOI: 10.1016/j.jmb.2020.166744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Gene regulation programs establish cellular identity and rely on dynamic changes in the structural packaging of genomic DNA. The DNA is packaged in chromatin, which is formed from arrays of nucleosomes displaying different degree of compaction and different lengths of inter-nucleosomal linker DNA. The nucleosome represents the repetitive unit of chromatin and is formed by wrapping 145-147 basepairs of DNA around an octamer of histone proteins. Each of the four histones is present twice and has a structured core and intrinsically disordered terminal tails. Chromatin dynamics are triggered by inter- and intra-nucleosome motions that are controlled by the DNA sequence, the interactions between the histone core and the DNA, and the conformations, positions, and DNA interactions of the histone tails. Understanding chromatin dynamics requires studying all these features at the highest possible resolution. For this, molecular dynamics simulations can be used as a powerful complement or alternative to experimental approaches, from which it is often very challenging to characterize the structural features and atomic interactions controlling nucleosome motions. Molecular dynamics simulations can be performed at different resolutions, by coarse graining the molecular system with varying levels of details. Here we review the successes and the remaining challenges of the application of atomic resolution simulations to study the structure and dynamics of nucleosomes and their complexes with interacting partners.
Collapse
Affiliation(s)
- Jan Huertas
- In Silico Biomolecular Structure and Dynamics Group, Hubrecht Institute, Utrecht, the Netherlands; Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany
| | - Vlad Cojocaru
- In Silico Biomolecular Structure and Dynamics Group, Hubrecht Institute, Utrecht, the Netherlands; Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany.
| |
Collapse
|
13
|
Palermo G, Spinello A, Saha A, Magistrato A. Frontiers of metal-coordinating drug design. Expert Opin Drug Discov 2020; 16:497-511. [PMID: 33874825 DOI: 10.1080/17460441.2021.1851188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The occurrence of metal ions in biomolecules is required to exert vital cellular functions. Metal-containing biomolecules can be modulated by small-molecule inhibitors targeting their metal-moiety. As well, the discovery of cisplatin ushered the rational discovery of metal-containing-drugs. The use of both drug types exploiting metal-ligand interactions is well established to treat distinct pathologies. Therefore, characterizing and leveraging metal-coordinating drugs is a pivotal, yet challenging, part of medicinal chemistry.Area covered: Atomic-level simulations are increasingly employed to overcome the challenges met by traditional drug-discovery approaches and to complement wet-lab experiments in elucidating the mechanisms of drugs' action. Multiscale simulations, allow deciphering the mechanism of metal-binding inhibitors and metallo-containing-drugs, enabling a reliable description of metal-complexes in their biological environment. In this compendium, the authors review selected applications exploiting the metal-ligand interactions by focusing on understanding the mechanism and design of (i) inhibitors targeting iron and zinc-enzymes, and (ii) ruthenium and gold-based anticancer agents targeting the nucleosome and aquaporin protein, respectively.Expert opinion: The showcased applications exemplify the current role and the potential of atomic-level simulations and reveal how their synergic use with experiments can contribute to uncover fundamental mechanistic facets and exploit metal-ligand interactions in medicinal chemistry.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California Riverside, Riverside, United States
| | - Angelo Spinello
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, Riverside, United States
| | - Alessandra Magistrato
- National Research Council (CNR) of Italy, Institute of Material (IOM) @ International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|