1
|
Kim SO, Yun SR, Lee H, Jo J, Ahn DS, Kim D, Kosheleva I, Henning R, Kim J, Kim C, You S, Kim H, Lee SJ, Ihee H. Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities. Nat Commun 2024; 15:6287. [PMID: 39060271 PMCID: PMC11282289 DOI: 10.1038/s41467-024-50696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Understanding protein structure and kinetics under physiological conditions is crucial for elucidating complex biological processes. While time-resolved (TR) techniques have advanced to track molecular actions, their practical application in biological reactions is often confined to reversible photoreactions within limited experimental parameters due to inefficient sample utilization and inflexibility of experimental setups. Here, we introduce serial X-ray liquidography (SXL), a technique that combines time-resolved X-ray liquidography with a fixed target of serially arranged microchambers. SXL breaks through the previously mentioned barriers, enabling microgram-scale TR studies of both irreversible and reversible reactions of even a non-photoactive protein. We demonstrate its versatility in studying a wide range of biological reactions, highlighting its potential as a flexible and multi-dimensional assay framework for kinetic and structural characterization. Leveraging X-ray free-electron lasers and micro-focused X-ray pulses promises further enhancements in both temporal resolution and minimizing sample quantity. SXL offers unprecedented insights into the structural and kinetic landscapes of molecular actions, paving the way for a deeper understanding of complex biological processes.
Collapse
Affiliation(s)
- Seong Ok Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - So Ri Yun
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyosub Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junbeom Jo
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doo-Sik Ahn
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Jungmin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seyoung You
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hanui Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Jin Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Nijhawan AK, Leshchev D, Hsu DJ, Chan AM, Rimmerman D, Hong J, Kosheleva I, Henning R, Kohlstedt KL, Chen LX. Unlocking the unfolded structure of ubiquitin: Combining time-resolved x-ray solution scattering and molecular dynamics to generate unfolded ensembles. J Chem Phys 2024; 161:035101. [PMID: 39007394 PMCID: PMC11257700 DOI: 10.1063/5.0217013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
The unfolding dynamics of ubiquitin were studied using a combination of x-ray solution scattering (XSS) and molecular dynamics (MD) simulations. The kinetic analysis of the XSS ubiquitin signals showed that the protein unfolds through a two-state process, independent of the presence of destabilizing salts. In order to characterize the ensemble of unfolded states in atomic detail, the experimental XSS results were used as a constraint in the MD simulations through the incorporation of x-ray scattering derived potential to drive the folded ubiquitin structure toward sampling unfolded states consistent with the XSS signals. We detail how biased MD simulations provide insight into unfolded states that are otherwise difficult to resolve and underscore how experimental XSS data can be combined with MD to efficiently sample structures away from the native state. Our results indicate that ubiquitin samples unfolded in states with a high degree of loss in secondary structure yet without a collapse to a molten globule or fully solvated extended chain. Finally, we propose how using biased-MD can significantly decrease the computational time and resources required to sample experimentally relevant nonequilibrium states.
Collapse
Affiliation(s)
- Adam K. Nijhawan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Arnold M. Chan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiyun Hong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin L. Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X. Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
3
|
Ellaway JIJ, Anyango S, Nair S, Zaki HA, Nadzirin N, Powell HR, Gutmanas A, Varadi M, Velankar S. Identifying protein conformational states in the Protein Data Bank: Toward unlocking the potential of integrative dynamics studies. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:034701. [PMID: 38774441 PMCID: PMC11106648 DOI: 10.1063/4.0000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024]
Abstract
Studying protein dynamics and conformational heterogeneity is crucial for understanding biomolecular systems and treating disease. Despite the deposition of over 215 000 macromolecular structures in the Protein Data Bank and the advent of AI-based structure prediction tools such as AlphaFold2, RoseTTAFold, and ESMFold, static representations are typically produced, which fail to fully capture macromolecular motion. Here, we discuss the importance of integrating experimental structures with computational clustering to explore the conformational landscapes that manifest protein function. We describe the method developed by the Protein Data Bank in Europe - Knowledge Base to identify distinct conformational states, demonstrate the resource's primary use cases, through examples, and discuss the need for further efforts to annotate protein conformations with functional information. Such initiatives will be crucial in unlocking the potential of protein dynamics data, expediting drug discovery research, and deepening our understanding of macromolecular mechanisms.
Collapse
Affiliation(s)
- Joseph I. J. Ellaway
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Stephen Anyango
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Sreenath Nair
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Hossam A. Zaki
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Nurul Nadzirin
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Harold R. Powell
- Imperial College London, Department of Life Sciences, London, United Kingdom
| | - Aleksandras Gutmanas
- WaveBreak Therapeutics Ltd., Clarendon House, Clarendon Road, Cambridge, United Kingdom
| | - Mihaly Varadi
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, European Bioinformatics Institute, Hinxton, United Kingdom
| |
Collapse
|
4
|
Chan AM, Nijhawan AK, Hsu DJ, Leshchev D, Rimmerman D, Kosheleva I, Kohlstedt KL, Chen LX. The Role of Transient Intermediate Structures in the Unfolding of the Trp-Cage Fast-Folding Protein: Generating Ensembles from Time-Resolved X-ray Solution Scattering with Genetic Algorithms. J Phys Chem Lett 2023; 14:1133-1139. [PMID: 36705525 PMCID: PMC10167713 DOI: 10.1021/acs.jpclett.2c03680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Trp-cage miniprotein is one of the smallest systems to exhibit a stable secondary structure and fast-folding dynamics, serving as an apt model system to study transient intermediates with both experimental and computational analyses. Previous spectroscopic characterizations that have been done on Trp-cage have inferred a single stable intermediate on a pathway from folded to unfolded basins. We aim to bridge the understanding of Trp-cage structural folding dynamics on microsecond-time scales, by utilizing time-resolved X-ray solution scattering to probe the temperature-induced unfolding pathway. Our results indicate the formation of a conformationally extended intermediate on the time scale of 1 μs, which undergoes complete unfolding within 5 μs. We further investigated the atomistic structural details of the unfolding pathway using a genetic algorithm to generate ensemble model fits to the scattering profiles. This analysis paves the way for direct benchmarking of theoretical models of protein folding ensembles produced with molecular dynamics simulations.
Collapse
Affiliation(s)
- Arnold M Chan
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Adam K Nijhawan
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Darren J Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Dolev Rimmerman
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois60637, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
5
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
6
|
V D, P J S, Rajeev N, S AL, Chandran A, G B G, Sadanandan S. Recent Advances in Peptides-Based Stimuli-Responsive Materials for Biomedical and Therapeutic Applications: A Review. Mol Pharm 2022; 19:1999-2021. [PMID: 35730605 DOI: 10.1021/acs.molpharmaceut.1c00983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Devika V
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sreelekshmi P J
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Niranjana Rajeev
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Aiswarya Lakshmi S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Amrutha Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Gouthami G B
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Sandhya Sadanandan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
7
|
Berntsson O, Terry AE, Plivelic TS. A setup for millisecond time-resolved X-ray solution scattering experiments at the CoSAXS beamline at the MAX IV Laboratory. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:555-562. [PMID: 35254321 PMCID: PMC8900842 DOI: 10.1107/s1600577522000996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The function of biomolecules is tightly linked to their structure, and changes therein. Time-resolved X-ray solution scattering has proven a powerful technique for interrogating structural changes and signal transduction in photoreceptor proteins. However, these only represent a small fraction of the biological macromolecules of interest. More recently, laser-induced temperature jumps have been introduced as a more general means of initiating structural changes in biomolecules. Here we present the development of a setup for millisecond time-resolved X-ray solution scattering experiments at the CoSAXS beamline, primarily using infrared laser light to trigger a temperature increase, and structural changes. We present results that highlight the characteristics of this setup along with data showing structural changes in lysozyme caused by a temperature jump. Further developments and applications of the setup are also discussed.
Collapse
Affiliation(s)
| | - Ann E. Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
8
|
Jeong H, Ki H, Kim JG, Kim J, Lee Y, Ihee H. Sensitivity of
time‐resolved
diffraction data to changes in internuclear distances and atomic positions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haeyun Jeong
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| |
Collapse
|
9
|
Sagar A, Bernadó P. Disentangling polydisperse biomolecular systems by Chemometrics decomposition of SAS data. Methods Enzymol 2022; 677:531-555. [DOI: 10.1016/bs.mie.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Nijhawan AK, Chan AM, Hsu DJ, Chen LX, Kohlstedt KL. Resolving Dynamics in the Ensemble: Finding Paths through Intermediate States and Disordered Protein Structures. J Phys Chem B 2021; 125:12401-12412. [PMID: 34748336 PMCID: PMC9096987 DOI: 10.1021/acs.jpcb.1c05820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins have been found to inhabit a diverse set of three-dimensional structures. The dynamics that govern protein interconversion between structures happen over a wide range of time scales─picoseconds to seconds. Our understanding of protein functions and dynamics is largely reliant upon our ability to elucidate physically populated structures. From an experimental structural characterization perspective, we are often limited to measuring the ensemble-averaged structure both in the steady-state and time-resolved regimes. Generating kinetic models and understanding protein structure-function relationships require atomistic knowledge of the populated states in the ensemble. In this Perspective, we present ensemble refinement methodologies that integrate time-resolved experimental signals with molecular dynamics models. We first discuss integration of experimental structural restraints to molecular models in disordered protein systems that adhere to the principle of maximum entropy for creating a complete set of ensemble structures. We then propose strategies to find kinetic pathways between the refined structures, using time-resolved inputs to guide molecular dynamics trajectories and the use of inference to generate tailored stimuli to prepare a desired ensemble of protein states.
Collapse
Affiliation(s)
- Adam K Nijhawan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arnold M Chan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Darren J Hsu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Cho HS, Schotte F, Stadnytskyi V, Anfinrud P. Time-resolved X-ray scattering studies of proteins. Curr Opin Struct Biol 2021; 70:99-107. [PMID: 34175665 PMCID: PMC8530917 DOI: 10.1016/j.sbi.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022]
Abstract
Time-resolved small- and wide-angle X-ray scattering studies of proteins in solution based on the pump-probe approach unveil structural information from intermediates over a broad range of length and time scales. In spite of the promise of this methodology, only a fraction of the wealth of information encoded in scattering data has been extracted in studies performed thus far. Here, we discuss the methodology, summarize results from recent time-resolved X-ray scattering studies, and examine the potential to extract additional information from these scattering curves.
Collapse
Affiliation(s)
- Hyun Sun Cho
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Friedrich Schotte
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Valentyn Stadnytskyi
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Philip Anfinrud
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
12
|
Hsu DJ, Leshchev D, Kosheleva I, Kohlstedt KL, Chen LX. Unfolding bovine α-lactalbumin with T-jump: Characterizing disordered intermediates via time-resolved x-ray solution scattering and molecular dynamics simulations. J Chem Phys 2021; 154:105101. [PMID: 33722011 PMCID: PMC7943248 DOI: 10.1063/5.0039194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The protein folding process often proceeds through partially folded transient states. Therefore, a structural understanding of these disordered states is crucial for developing mechanistic models of the folding process. Characterization of unfolded states remains challenging due to their disordered nature, and incorporating multiple methods is necessary. Combining the time-resolved x-ray solution scattering (TRXSS) signal with molecular dynamics (MD), we are able to characterize transient partially folded states of bovine α-lactalbumin, a model system widely used for investigation of molten globule states, during its unfolding triggered by a temperature jump. We track the unfolding process between 20 µs and 70 ms and demonstrate that it passes through three distinct kinetic states. The scattering signals associated with these transient species are then analyzed with TRXSS constrained MD simulations to produce protein structures that are compatible with the input signals. Without utilizing any experimentally extracted kinetic information, the constrained MD simulation successfully drove the protein to an intermediate molten globule state; signals for two later disordered states are refined to terminal unfolded states. From our examination of the structural characteristics of these disordered states, we discuss the implications disordered states have on the folding process, especially on the folding pathway. Finally, we discuss the potential applications and limitations of this method.
Collapse
Affiliation(s)
- Darren J. Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin L. Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X. Chen
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
13
|
Empel C, Jana S, Pei C, Nguyen TV, Koenigs RM. Photochemical O–H Functionalization of Aryldiazoacetates with Phenols via Proton Transfer. Org Lett 2020; 22:7225-7229. [DOI: 10.1021/acs.orglett.0c02564] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
- School of Chemistry, University of New South Waley, Sydney 2052, Australia
| | - Sripati Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Chao Pei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Waley, Sydney 2052, Australia
| | - Rene M. Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
- School of Chemistry, University of New South Waley, Sydney 2052, Australia
| |
Collapse
|
14
|
Hsu DJ, Leshchev D, Kosheleva I, Kohlstedt KL, Chen LX. Integrating solvation shell structure in experimentally driven molecular dynamics using x-ray solution scattering data. J Chem Phys 2020; 152:204115. [PMID: 32486681 DOI: 10.1063/5.0007158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, prediction of macromolecular structures beyond the native conformation has been aided by the development of molecular dynamics (MD) protocols aimed at exploration of the energetic landscape of proteins. Yet, the computed structures do not always agree with experimental observables, calling for further development of the MD strategies to bring the computations and experiments closer together. Here, we report a scalable, efficient MD simulation approach that incorporates an x-ray solution scattering signal as a driving force for the conformational search of stable structural configurations outside of the native basin. We further demonstrate the importance of inclusion of the hydration layer effect for a precise description of the processes involving large changes in the solvent exposed area, such as unfolding. Utilization of the graphics processing unit allows for an efficient all-atom calculation of scattering patterns on-the-fly, even for large biomolecules, resulting in a speed-up of the calculation of the associated driving force. The utility of the methodology is demonstrated on two model protein systems, the structural transition of lysine-, arginine-, ornithine-binding protein and the folding of deca-alanine. We discuss how the present approach will aid in the interpretation of dynamical scattering experiments on protein folding and association.
Collapse
Affiliation(s)
- Darren J Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
15
|
Photoinduzierte Protonentransferreaktionen für milde O‐H‐Funktionalisierungsreaktionen unreaktiver Alkohole. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Jana S, Yang Z, Li F, Empel C, Ho J, Koenigs RM. Photoinduced Proton-Transfer Reactions for Mild O-H Functionalization of Unreactive Alcohols. Angew Chem Int Ed Engl 2020; 59:5562-5566. [PMID: 31880397 PMCID: PMC7154649 DOI: 10.1002/anie.201915161] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/26/2019] [Indexed: 12/16/2022]
Abstract
Hexafluoroisopropanol is typically considered as an unreactive solvent and not as a reagent in organic synthesis. Herein, we report on a mild and efficient photochemical reaction of aryl diazoacetates with hexafluoroisopropanol that enables, under stoichiometric reaction conditions, the synthesis of fluorinated ethers in excellent yield. Mechanistic studies indicate there is a preorganization of hexafluoroisopropanol and the diazoalkane acts as an unreactive hydrogen-bonding complex. Only after photoexcitation does this complex undergo a protonation-substitution reaction to the reaction product. Investigations on the applicability of this photochemical transformation show that a broad variety of acidic alcohols can be subjected to this transformation and thus demonstrate the feasibility of this concept for O-H functionalization reactions (54 examples, up to 98 % yield).
Collapse
Affiliation(s)
- Sripati Jana
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Zhen Yang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Fang Li
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
17
|
Li B, Tian L, He X, Ji X, Khalid H, Yue C, Liu Q, Yu X, Lei S, Hu W. Tunable oligo-histidine self-assembled monolayer junction and charge transport by a pH modulated assembly. Phys Chem Chem Phys 2019; 21:26058-26065. [PMID: 31746863 DOI: 10.1039/c9cp04695j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histidine works as an important mediator in the charge transport process through proteins via its conjugate side group. It can also stabilize a peptide's secondary structure through hydrogen bonding of the imidazole group. In this study, the conformation of the self-assembled monolayer (SAM) and the charge transport of the tailor-made oligopeptide hepta-histidine derivative (7-His) were modulated through the pH control of the assembly environment. Histidine is found to be an efficient tunneling mediator in monolayer junctions with an attenuation factor of β = ∼0.5 Å-1. Successful theoretical model fitting indicates a linear increase in the number of tunneling sites as the 7-His SAM thickness increases, following the deprotonation of histidine. Combined with the ultraviolet photoelectron spectroscopy (UPS) measurements, a modulable charge transport pathway through 7-His with imidazole groups of histidine as tunneling foot stones is revealed. Histidine therefore possesses a large potential for modulable functional (bio)electronic devices.
Collapse
Affiliation(s)
- Baili Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Thompson MC, Barad BA, Wolff AM, Sun Cho H, Schotte F, Schwarz DMC, Anfinrud P, Fraser JS. Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme. Nat Chem 2019; 11:1058-1066. [PMID: 31527847 PMCID: PMC6815256 DOI: 10.1038/s41557-019-0329-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature jumps, through thermal excitation of the solvent, have been utilized to study protein dynamics using spectroscopic techniques, but their implementation in X-ray scattering experiments has been limited. Here, we perform temperature-jump small- and wide-angle X-ray scattering measurements on a dynamic enzyme, cyclophilin A, demonstrating that these experiments are able to capture functional intramolecular protein dynamics on the microsecond timescale. We show that cyclophilin A displays rich dynamics following a temperature jump, and use the resulting time-resolved signal to assess the kinetics of conformational changes. Two relaxation processes are resolved: a fast process is related to surface loop motions, and a slower process is related to motions in the core of the protein that are critical for catalytic turnover.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin A Barad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander M Wolff
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.,Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hyun Sun Cho
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Friedrich Schotte
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel M C Schwarz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.,Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Philip Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|