1
|
Tarif E, Das N, Sen P. Does Viscosity Decoupling Guarantee Dynamic Heterogeneity? A Clue through an Excitation and Emission Wavelength-Dependent Time-Resolved Fluorescence Anisotropy Study. J Phys Chem B 2023; 127:7162-7173. [PMID: 37549044 DOI: 10.1021/acs.jpcb.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Traditionally, deviation from Stokes-Einstein-Debye (SED) relation in terms of viscosity dependence of medium dynamics, i.e., τ x ∝ ( η T ) p with p ≠ 1, is taken as a signature of dynamic heterogeneity. However, it does not guarantee medium heterogeneity, as the decoupling may also originate from the deviation of the basic assumption of SED. Here, we developed a method to find a stronger relation between viscosity decoupling (p ≠ 1) and dynamic heterogeneity in terms of rotational motion. Our approach exploited the fact that in heterogeneous media, a solvatochromic probe will be solvated to a different extent at different microdomains (subpopulations), and photoselection of these subpopulations can be achieved by excitation or emission wavelength-dependent measurements. We hypothesized that the dynamics of a homogeneous system might show viscosity decoupling, but the extent of decoupling at different excitations (or at different emissions) should not be different. On the other hand, in a heterogeneous medium, this extent of viscosity decoupling (p-value) should be different at different excitations (or at different emissions). As proof of concept, we investigated three versatile solvent media: squalane (viscous molecular liquid), 1-ethyle-3-methylimidazolium ethyl sulfate ionic liquid (IL), and [0.78 acetamide + 0.22 LiNO3] deep eutectic solvent (DES). We found that squalane is homogeneous, although it shows fractional viscosity dependence (p ≠ 1). Interestingly, mild heterogeneity in IL and significant heterogeneity in the DES were observed. Overall, we conclude that the difference in the p-value as a function of excitation (or emission) wavelength-dependent might be a superior way for the detection of dynamic heterogeneity.
Collapse
Affiliation(s)
- Ejaj Tarif
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| |
Collapse
|
2
|
Maity T, Paul S, De P. Side-chain amino acid-based macromolecular architectures. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tanmoy Maity
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
3
|
Dynamics of a PEG based polymer gel Electrolyte: A combined frequency dependent dielectric relaxation and Time-resolved fluorescence spectroscopic study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Kumbhakar K, Dey A, Mondal A, De P, Biswas R. Interactions and Dynamics in Aqueous Solutions of pH-Responsive Polymers: A Combined Fluorescence and Dielectric Relaxation Study. J Phys Chem B 2021; 125:6023-6035. [PMID: 34057364 DOI: 10.1021/acs.jpcb.1c03435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction and dynamics of aqueous solutions of pH-responsive smart polymers are investigated via steady-state, time-resolved fluorescence emission spectroscopy with the help of external local reporter coumarin 153 (C153), while MHz to GHz dielectric relaxation spectroscopic (DRS) measurement reports the intrinsic medium relaxation features. A series of pH-responsive random copolymers (DPL-DP60) comprising of a pH-responsive moiety 2-((leucinyl)oxy)ethyl methacrylate (l-Leu-HEMA) and hydrophobic methyl methacrylate (MMA) are synthesized and characterized. A balance between the pH-responsive (l-Leu-HEMA) and the hydrophobic (MMA) content dictates the phase transition pH, which is found to be ∼5-7 for these aqueous copolymer solutions (1 mg/mL). Dynamic light scattering measurements in aqueous solutions of these polymers reflect a small particle size (∼2-8 nm) at solution pH below their individual phase transition pH, while a large particle size (∼140-340 nm) forms beyond their phase transition pH. No signature of a phase transition pH-driven abrupt change in static and dynamic properties of aqueous polymer solutions has been registered from pH-dependent dielectric relaxation as well as solute (C153)-centric fluorescence measurements. A significant impact of varying the l-Leu-HEMA/MMA segment ratio on steady-state fluorescence emission and rotational anisotropy decay of the fluorophore solute (C153) has been observed. MHz to GHz DRS in aqueous solutions of these pH-responsive polymers reflects bulk water-like dielectric features.
Collapse
Affiliation(s)
- Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Amrita Mondal
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
5
|
Robles-Hernández B, González E, Pomposo JA, Colmenero J, Alegría Á. Water dynamics and self-assembly of single-chain nanoparticles in concentrated solutions. SOFT MATTER 2020; 16:9738-9745. [PMID: 32996537 DOI: 10.1039/d0sm01447h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-chain polymer nanoparticles (SCNPs) are soft nano-objects consisting of uni-macromolecular chains collapsed to a certain degree by intramolecular crosslinking. The similarities between the behaviour of SCNPs and that of intrinsically disordered proteins suggest that SCNPs in concentrated solutions can be used as models to design artificial micro-environments, which mimic many of the general aspects of cellular environments. In this work, the self-assembly into SCNPs of an amphiphilic random copolymer, composed by oligo(ethylene glycol)methyl ether methacrylate (OEGMA) and 2-acetoacetoxy ethyl methacrylate (AEMA), has been investigated by means of the dielectric relaxation of water. Direct evidence of segregation of the AEMA repeating units is provided by comparison with the dielectric relaxation of water in similar solutions of the linear hydrophilic polymer, P(OEGMA). Furthermore, the results of comparative studies with similar water solutions of an amphiphilic block copolymer forming multi-chain micelles support the single-chain character of the self-assembly of the random copolymer. The overall obtained results highlight the suitability of the dielectric spectroscopy to confirm the self-assembly of the amphiphilic random copolymers into globular like core-shell single-chain nanoparticles at a concentration well above the overlap concentration.
Collapse
Affiliation(s)
- Beatriz Robles-Hernández
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain.
| | | | | | | | | |
Collapse
|
6
|
Kumbhakar K, Saha B, De P, Biswas R. Cloud Point Driven Dynamics in Aqueous Solutions of Thermoresponsive Copolymers: Are They Akin to Criticality Driven Solution Dynamics? J Phys Chem B 2019; 123:11042-11054. [PMID: 31794221 DOI: 10.1021/acs.jpcb.9b07840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cloud point driven interaction and relaxation dynamics of aqueous solutions of amphiphilic thermoresponsive copolymers were explored through picosecond resolved and steady state fluorescence measurements employing hydrophilic (coumarin 343, C343) and hydrophobic (coumarin 153, C153) solute probes of comparable sizes. These thermoresponsive random copolymers, with tunable cloud point temperatures (Tcp's) between 298 and 323 K, were rationally designed first and then synthesized via reversible addition-fragmentation chain transfer (RAFT) copolymerization of methyl methacrylate (MMA) and poly(ethylene glycol) monomethyl ether methacrylate (PEGMA). Subsequently, copolymers were characterized by NMR spectroscopy and size exclusion chromatography (SEC). A balance between the hydrophilic (PEGMA) and the hydrophobic (MMA) content dictates the critical aggregation concentration (CAC), with CAC ∼ 2-14 mg/L for these copolymers in aqueous media. No abrupt changes in the steady state spectral features of both C153 and C343 in the aqueous solutions of these polymers near but below the cloud point temperatures were observed. Interestingly, spectral properties of C153 in these solutions show the impact of hydrophobic/hydrophilic interaction balance but not by those of C343. More specifically, C153 reported a blue shift (relative to that in neat water) and heterogeneity in its local environment. This suggested different locations for the hydrophilic (C343) and the hydrophobic (C153) probes. In addition, the excited state fluorescence lifetime (⟨τlife⟩) of C153 increased with the increase of hydrophobic (MMA) content in these copolymers. However, C343 reported no such variations, although fluorescence anisotropy decays for both solutes were significantly slowed down in these aqueous solutions compared to neat water. Anisotropy decays indicated bimodal time-dependent friction for these solutes in aqueous solutions of these copolymers but monomodal in neat water. A linear dependence of the average rotational relaxation rates (⟨krot⟩ = ⟨τrot⟩-1) of the type ⟨krot⟩ ∝ (|T - Tcp|/Tcp)γ with negative values for the exponent γ was observed for both solutes. No slowing down of the solute rotation with temperature approaching the Tcp was detected; rather, rotation became faster upon increasing the solution temperature, suggesting domination of the local friction.
Collapse
Affiliation(s)
- Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake, Kolkata 700106 , India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , Nadia, West Bengal , India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , Nadia, West Bengal , India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake, Kolkata 700106 , India
| |
Collapse
|
7
|
Tarif E, Mondal J, Biswas R. Interaction and Dynamics in a Fully Biodegradable Glucose-Containing Naturally Abundant Deep Eutectic Solvent: Temperature-Dependent Time-Resolved Fluorescence Measurements. J Phys Chem B 2019; 123:9378-9387. [PMID: 31599593 DOI: 10.1021/acs.jpcb.9b06783] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new room-temperature deep eutectic solvent (DES) composed of glucose, urea, and water has been prepared and its relaxation dynamics explored via temperature-dependent time-resolved fluorescence measurements employing hydrophilic and hydrophobic solute probes. Differential scanning calorimetry measurements indicate a glass transition temperature (Tg) of ∼236 K. Measured viscosity coefficients (η) vary from ∼600 to ∼100 cP in the temperature range 318 ≤ T/K ≤ 343 and exhibit Arrhenius-type temperature dependence with an activation energy of ∼65 kJ mol-1. Interestingly, this DES forms a stable liquid at ∼300 K but is too viscous to be accurately measured by us below 318 K. Temperature-dependent dynamic fluorescence anisotropy measurements using hydrophobic and hydrophilic solutes of similar sizes reveal bi-exponential kinetics and Arrhenius-type temperature dependence for solute rotation times (⟨τr⟩) but with significantly decreased activation energies, ∼31 kJ mol-1 (hydrophobic) and ∼21 kJ mol-1 (hydrophilic). Deviation from hydrodynamics is further reflected in the strong fractional viscosity dependence of ⟨τr⟩: ⟨τr⟩ ∝ (η/T)p with p ≈ 0.3-0.5, indicating pronounced temporal heterogeneity in the relaxation dynamics. Dynamic fluorescence Stokes shift measurements (temporal resolution ∼85 ps) produce dynamic shifts of ∼500-700 cm-1, bi-exponential solvation energy relaxation with time constants in the range ∼0.2 ns and ∼4 ns, and estimated missing amplitudes of ∼65-75%. Impact of the density difference between a nonpolar solvent and this DES on the estimated missing amplitudes is explored via measuring the temperature-dependent densities and refractive indices of this DES. Lifetime measurements suggest considerable temperature dependence for the hydrophobic solute but no such dependence for the hydrophilic one. Excitation energy dependence of fluorescence emission of various solutes with widely different lifetimes indicates mild spatial heterogeneity for this DES.
Collapse
Affiliation(s)
- Ejaj Tarif
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake , Kolkata 700106 , India
| | - Jayanta Mondal
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake , Kolkata 700106 , India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake , Kolkata 700106 , India
| |
Collapse
|
8
|
Tarif E, Mukherjee K, Kumbhakar K, Barman A, Biswas R. Dynamics at the non-ionic micelle/water interface: Impact of linkage substitution. J Chem Phys 2019; 151:154902. [DOI: 10.1063/1.5121334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ejaj Tarif
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Kallol Mukherjee
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Anjan Barman
- Condensed Matter Physics and Material Sciences (CMPMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|