1
|
Lee D, Song YY, Wu A, Li J, Yun J, Seo DH, Lee SW. Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte. Nat Commun 2024; 15:9032. [PMID: 39426948 PMCID: PMC11490633 DOI: 10.1038/s41467-024-53235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Kinetic energy harvesting has significant potential, but current methods, such as friction and deformation-based systems, require high-frequency inputs and highly durable materials. We report an electrochemical system using a two-phase immiscible liquid electrolyte and Prussian blue analogue electrodes for harvesting low-frequency kinetic energy. This system converts translational kinetic energy from the displacement of electrodes between electrolyte phases into electrical energy, achieving a peak power of 6.4 ± 0.08 μW cm-2, with a peak voltage of 96 mV and peak current density of 183 μA cm-2 using a 300 Ω load. This load is several thousand times smaller than those typically employed in conventional methods. The charge density reaches 2.73 mC cm-2, while the energy density is 116 μJ cm-2 during a harvesting cycle. Also, the system provides a continuous current flow of approximately 5 μA cm-2 at 0.005 Hz for 23 cycles without performance decay. The driving force behind voltage generation is the difference in solvation Gibbs free energy between the two electrolyte phases. Additionally, we demonstrate the system's functionality in a microfluidic harvester, generating a maximum power density of 200 nW cm-2 by converting the kinetic energy to propel the electrolyte through the microfluidic channel into electricity.
Collapse
Affiliation(s)
- Donghoon Lee
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - You-Yeob Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Angyin Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Jia Li
- Rolls-Royce@NTU Corporate Lab Nanyang Technological University Singapore, 639798, Singapore, Singapore
| | - Jeonghun Yun
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Dong-Hwa Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Seok Woo Lee
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore, Singapore.
- Rolls-Royce@NTU Corporate Lab Nanyang Technological University Singapore, 639798, Singapore, Singapore.
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Stanković I, Dašić M, Jovanović M, Martini A. Effects of Water Content on the Transport and Thermodynamic Properties of Phosphonium Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9049-9058. [PMID: 38641549 DOI: 10.1021/acs.langmuir.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
We present a numerical investigation of the influence of water content on the dynamic properties of a family of phosphonium-based room-temperature ionic liquids. The study presents a compelling correlation between structural changes in water-ionic liquid solutions and thermodynamic and transport properties across diverse systems. The results for phosphonium ionic liquids are compared with 1-butyl-3-methylimidazolium hexaphosphate ([bmim]PF6) as a reference. Through this approach, phosphonium cation structure-related characteristics can be identified and placed within the broader context of ionic liquids. These insights are underpinned by observed changes in interaction energy, boiling point, diffusion rate, and viscosity, highlighting the crucial role of water molecules in weakening the strength of interactions between ions within the ionic liquid. The investigation also explains temperature-dependent trends in phosphonium cations, showing that alkyl group length and molecular symmetry are important tuning parameters for the strength of Coulomb interactions. These results contribute to a refined understanding of phosphonium ionic liquid behavior in the presence of water, offering valuable insights for optimizing their use in diverse fields.
Collapse
Affiliation(s)
- Igor Stanković
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia
| | - Miljan Dašić
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia
| | - Mateja Jovanović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California, Merced, California 95343, United States
| |
Collapse
|
4
|
Abstract
Condensable gases are the sum of condensable and volatile steam or organic compounds, including water vapor, which are discharged into the atmosphere in gaseous form at atmospheric pressure and room temperature. Condensable toxic and harmful gases emitted from petrochemical, chemical, packaging and printing, industrial coatings, and mineral mining activities seriously pollute the atmospheric environment and endanger human health. Meanwhile, these gases are necessary chemical raw materials; therefore, developing green and efficient capture technology is significant for efficiently utilizing condensed gas resources. To overcome the problems of pollution and corrosion existing in traditional organic solvent and alkali absorption methods, ionic liquids (ILs), known as "liquid molecular sieves", have received unprecedented attention thanks to their excellent separation and regeneration performance and have gradually become green solvents used by scholars to replace traditional absorbents. This work reviews the research progress of ILs in separating condensate gas. As the basis of chemical engineering, this review first provides a detailed discussion of the origin of predictive molecular thermodynamics and its broad application in theory and industry. Afterward, this review focuses on the latest research results of ILs in the capture of several important typical condensable gases, including water vapor, aromatic VOCs (i.e., BTEX), chlorinated VOC, fluorinated refrigerant gas, low-carbon alcohols, ketones, ethers, ester vapors, etc. Using pure IL, mixed ILs, and IL + organic solvent mixtures as absorbents also briefly expanded the related reports of porous materials loaded with an IL as adsorbents. Finally, future development and research directions in this exciting field are remarked.
Collapse
Affiliation(s)
- Guoxuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
5
|
Molodkina EB, Ehrenburg MR, Rudnev AV. Accelerating effect of water on electroreduction of lanthanide ions in a dicyanamide ionic liquid: A generic phenomenon. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Recent updates on applications of ionic liquids (ILs) for biomedical sciences. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Bottari C, Almásy L, Rossi B, Bracco B, Paolantoni M, Mele A. Interfacial Water and Microheterogeneity in Aqueous Solutions of Ionic Liquids. J Phys Chem B 2022; 126:4299-4308. [PMID: 35649236 PMCID: PMC9207890 DOI: 10.1021/acs.jpcb.1c10961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/08/2022] [Indexed: 11/28/2022]
Abstract
In this work, aqueous solutions of two prototypical ionic liquids (ILs), [BMIM][BF4] and [BMIM][TfO], were investigated by UV Raman spectroscopy and small-angle neutron scattering (SANS) in the water-rich domain, where strong heterogeneities at mesoscopic length scales (microheterogeneity) were expected. Analyzing Raman data by a differential method, the solute-correlated (SC) spectrum was extracted from the OH stretching profiles, emphasizing specific hydration features of the anions. SC-UV Raman spectra pointed out the molecular structuring of the interfacial water in these microheterogeneous IL/water mixtures, in which IL aggregates coexist with bulk water domains. The organization of the interfacial water differs for the [BMIM][BF4] and [BMIM][TfO] solutions, being affected by specific anion-water interactions. In particular, in the case of [BMIM][BF4], which forms weaker H-bonds with water, the aggregation properties clearly depend on concentration, as reflected by local changes in the interfacial water. On the other hand, stronger water-anion hydrogen bonds and more persistent hydration layers were observed for [BMIM][TfO], which likely prevent changes in IL aggregates. The modeling of SANS profiles, extended to [BPy][BF4] and [BPy][TfO], evidences the occurrence of significant concentration fluctuations for all of the systems: this appears as a rather general phenomenon that can be ascribed to the presence of IL aggregation, mainly induced by (cation-driven) hydrophobic interactions. Nevertheless, larger concentration fluctuations were observed for [BMIM][BF4], suggesting that anion-water interactions are relevant in modulating the microheterogeneity of the mixture.
Collapse
Affiliation(s)
- Cettina Bottari
- Elettra
Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - László Almásy
- Institute
for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly-Thege Miklós út 29−33, 1121 Budapest, Hungary
| | - Barbara Rossi
- Elettra
Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Brenda Bracco
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marco Paolantoni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Andrea Mele
- Department
of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
8
|
Curreri AM, Mitragotri S, Tanner EEL. Recent Advances in Ionic Liquids in Biomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004819. [PMID: 34245140 PMCID: PMC8425867 DOI: 10.1002/advs.202004819] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Indexed: 05/04/2023]
Abstract
The use of ionic liquids and deep eutectic solvents in biomedical applications has grown dramatically in recent years due to their unique properties and their inherent tunability. This review will introduce ionic liquids and deep eutectics and discuss their biomedical applications, namely solubilization of drugs, creation of active pharmaceutical ingredients, delivery of pharmaceuticals through biological barriers, stabilization of proteins and other nucleic acids, antibacterial agents, and development of new biosensors. Current challenges and future outlooks are discussed, including biocompatibility, the potential impact of the presence of impurities, and the importance of understanding the microscopic interactions in ionic liquids in order to design task-specific solvents.
Collapse
Affiliation(s)
- Alexander M. Curreri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Eden E. L. Tanner
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Present address:
Department of Chemistry and BiochemistryThe University of MississippiUniversityMS38677USA
| |
Collapse
|
9
|
Yavir K, Kloskowski A. Ionogel sorbent coatings for determining organophosphorus and pyrethroid insecticides in water and fresh juice samples by headspace-solid phase microextraction. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Dielectric behavior of water in [bmim] [$$\hbox {Tf}_2$$N] room-temperature ionic liquid: molecular dynamic study. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Insight into the behavior at the hygroscopicity and interface of the hydrophobic imidazolium-based ionic liquids. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
de Izarra A, Choi C, Jang YH, Lansac Y. Ionic Liquid for PEDOT:PSS Treatment. Ion Binding Free Energy in Water Revealing the Importance of Anion Hydrophobicity. J Phys Chem B 2021; 125:1916-1923. [DOI: 10.1021/acs.jpcb.0c10068] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ambroise de Izarra
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Changwon Choi
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
13
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
14
|
Yavir K, Konieczna K, Marcinkowski Ł, Kloskowski A. Tuning the extraction properties of ionogel-coated Solid-phase microextraction fibers based on the solvation properties of the ionic liquids. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Jeong KJ, McDaniel JG, Yethiraj A. A Transferable Polarizable Force Field for Urea Crystals and Aqueous Solutions. J Phys Chem B 2020; 124:7475-7483. [DOI: 10.1021/acs.jpcb.0c05814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kyeong-jun Jeong
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse G. McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Arun Yethiraj
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Stoppelman JP, McDaniel JG. Proton Transport in [BMIM+][BF4–]/Water Mixtures Near the Percolation Threshold. J Phys Chem B 2020; 124:5957-5970. [DOI: 10.1021/acs.jpcb.0c02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- John P. Stoppelman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| | - Jesse G. McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332-0400, United States
| |
Collapse
|
17
|
Shyama M, Lakshmipathi S. Water confined (H2O) n=1–10 amino acid-based ionic liquids – A DFT study on the bonding, energetics and IR spectra. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Verma A, Stoppelman JP, McDaniel JG. Tuning Water Networks via Ionic Liquid/Water Mixtures. Int J Mol Sci 2020; 21:E403. [PMID: 31936347 PMCID: PMC7013630 DOI: 10.3390/ijms21020403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
Water in nanoconfinement is ubiquitous in biological systems and membrane materials, with altered properties that significantly influence the surrounding system. In this work, we show how ionic liquid (IL)/water mixtures can be tuned to create water environments that resemble nanoconfined systems. We utilize molecular dynamics simulations employing ab initio force fields to extensively characterize the water structure within five different IL/water mixtures: [BMIM + ][BF 4 - ], [BMIM + ][PF 6 - ], [BMIM + ][OTf - ], [BMIM + ][NO 3 - ]and [BMIM + ][TFSI - ] ILs at varying water fraction. We characterize water clustering, hydrogen bonding, water orientation, pairwise correlation functions and percolation networks as a function of water content and IL type. The nature of the water nanostructure is significantly tuned by changing the hydrophobicity of the IL and sensitively depends on water content. In hydrophobic ILs such as [BMIM + ][PF 6 - ], significant water clustering leads to dynamic formation of water pockets that can appear similar to those formed within reverse micelles. Furthermore, rotational relaxation times of water molecules in supersaturated hydrophobic IL/water mixtures indicate the close-connection with nanoconfined systems, as they are quantitatively similar to water relaxation in previously characterized lyotropic liquid crystals. We expect that this physical insight will lead to better design principles for incorporation of ILs into membrane materials to tune water nanostructure.
Collapse
Affiliation(s)
| | | | - Jesse G. McDaniel
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta 30332-0400, Georgia; (A.V.); (J.P.S.)
| |
Collapse
|