1
|
Malik R, Saito S, Chandra A. Effect of counterions on the structure and dynamics of water near a negatively charged surfactant: a theoretical vibrational sum frequency generation study. Phys Chem Chem Phys 2024; 26:17065-17074. [PMID: 38841889 DOI: 10.1039/d4cp00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Charged aqueous interfaces are of paramount importance in electrochemical, biological and environmental sciences. The properties of aqueous interfaces with ionic surfactants can be influenced by the presence of counterions. Earlier experiments involving vibrational sum frequency generation (VSFG) spectroscopy of aqueous interfaces with negatively charged sodium dodecyl sulfate (Na+DS- or SDS) surfactants revealed that the hydrogen bonding strength of the interfacial water molecules follows a certain order when salts of monovalent and divalent cations are added. It is known that cations do not directly participate in hydrogen bonding with water molecules, rather they only influence the hydrogen bonded network through their electrostatic fields. In the current work, we have simulated the aqueous interfacial systems of sodium dodecyl sulfate in the presence of chloride salts of mono and divalent countercations. The electronic polarization effects on the ions are considered at a mean-field level within the electronic continuum correction model. Our calculations of the VSFG spectra show a blue shift in the presence of added countercations whose origin is traced to different relative contributions of water molecules from the solvation shells of the surfactant headgroups and the remaining water molecules in the presence of countercations. Furthermore, the cations shield the electric fields of the surfactant headgroups, which in turn influences the contributions of water molecules to the total VSFG spectrum. This shielding effect becomes more significant when divalent countercations are present. The dynamics of water molecules is found to be slower at the interface in comparison to the bulk. The interfacial depth dependence of various dynamical quantities shows that the interface is structurally and dynamically more heterogeneous at the microscopic level.
Collapse
Affiliation(s)
- Ravi Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India.
- Department of Theoretical and Computational Molecular Science, Institute of Molecular Science, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute of Molecular Science, Myodaiji, Okazaki 444-8585, Aichi, Japan
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India.
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India.
- Department of Theoretical and Computational Molecular Science, Institute of Molecular Science, Myodaiji, Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
2
|
Rana B, Fairhurst DJ, Jena KC. Ion-Specific Water-Macromolecule Interactions at the Air/Aqueous Interface: An Insight into Hofmeister Effect. J Am Chem Soc 2023; 145:9646-9654. [PMID: 37094217 DOI: 10.1021/jacs.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The specificity of ions in inducing conformational changes in macromolecules is introduced as the Hofmeister series; however, the detailed underlying mechanism is not comprehensible yet. We utilized surface-specific sum frequency generation (SFG) vibrational spectroscopy to explore the Hofmeister effect at the air/polyvinylpyrrolidone (PVP)/water interface. The spectral signature observed from the ssp polarization scheme reveals ion-specific ordering of water molecules following the Hofmeister series attributed to the ion-macromolecule interactions. Along with this, the presence of ions does not reflect any significant influence on the structure of the PVP macromolecule. However, the ppp-SFG spectra in the CH-stretch region reveal the impact of ions on the orientation angle of vinyl chain CH2-groups, which follows the Hofmeister series: SO42- > Cl- > NO3- > Br- > ClO4- > SCN-. The minimal orientation angle of CH2-groups indicates significant reordering in PVP vinyl chains in the presence of chaotropic anions ClO4-, and SCN-. The observation is attributed to the ion-specific water-macromolecule interactions at the air/aqueous interface. It is compelling to observe the signature of spectral blue shifts in the OH-stretch region in the ppp configuration in the presence of chaotropic anions. The origin of spectral blue shifts has been ascribed to the existence of weaker interactions between the interfacial water molecules and the backbone CH- and CH2-moieties of the PVP macromolecules. The ion-specific modulation in water-macromolecule interactions is endorsed by the relative propensity of anion's adsorption toward the air/aqueous interface. The experimental findings highlight the existence and cooperative participation of ion-specific water-macromolecule interactions in the mechanism of the Hofmeister effect, along with the illustrious ion-water and ion-macromolecule interactions.
Collapse
Affiliation(s)
- Bhawna Rana
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - David J Fairhurst
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, U.K
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
3
|
Rimoli CV, de Oliveira Pedro R, Miranda PB. Interaction mechanism of chitosan oligomers in pure water with cell membrane models studied by SFG vibrational spectroscopy. Colloids Surf B Biointerfaces 2022; 219:112782. [PMID: 36063719 DOI: 10.1016/j.colsurfb.2022.112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022]
Abstract
Chitosan is a versatile and biocompatible cationic antimicrobial polymer obtained from sustainable sources that is effective against a wide range of microorganisms. Although it is soluble only at low pH, chitosan oligomers (ChitO) are soluble in pure water and thus more appropriate for antibacterial applications. Although there is a vast literature on chitosan's antimicrobial activity, the molecular details of its interaction with biomembranes remain unclear. Here we investigate these molecular interactions by resorting to phospholipid Langmuir films (zwitterionic DPPC and anionic DPPG) as simplified membrane models (for mammalian and bacterial membranes, respectively), and using SFG vibrational spectroscopy to probe lipid tail conformation, headgroup dynamics and interfacial water orientation. For comparison, we also investigate the interactions of another simple cationic antimicrobial polyelectrolyte, poly(allylamine) hydrochloride - PAH. By forming the lipid films over the polyelectrolyte solutions, we found that both have only a very small interaction with DPPC, but PAH adsorption is able to invert the interfacial water orientation (membrane potential). This might explain why ChitO is compatible with mammalian cells, while PAH is toxic. In contrast, their interaction with DPPG films is much stronger, even more so for ChitO, with both insertion within the lipid film and interaction with the oppositely charged headgroups. Again, PAH adsorption inverts the membrane potential, while ChitO does not. Finally, ChitO interaction with DPPG is weaker if the antimicrobial is injected underneath a pre-assembled Langmuir film, and its interaction mode depends on the time interval between end of film compression and ChitO injection. These differences between ChitO and PAH effects on the model membranes highlight the importance of molecular structure and intermolecular interactions for their bioactivity, and therefore this study may provide insights for the rational design of more effective antimicrobial molecules.
Collapse
Affiliation(s)
- Caio Vaz Rimoli
- Sao Carlos Physics Institute, University of Sao Paulo, CP 369, Sao Carlos CEP 13560-970, SP, Brazil; Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, College de France, 24 Rue Lhomond, F-75005 Paris, France
| | - Rafael de Oliveira Pedro
- Sao Carlos Physics Institute, University of Sao Paulo, CP 369, Sao Carlos CEP 13560-970, SP, Brazil; Department of exact and earth sciences, Minas Gerais State University (UEMG), Ituiutaba CEP 38302-192, MG, Brazil
| | - Paulo B Miranda
- Sao Carlos Physics Institute, University of Sao Paulo, CP 369, Sao Carlos CEP 13560-970, SP, Brazil.
| |
Collapse
|
4
|
Rana B, Fairhurst DJ, Jena KC. Investigation of Water Evaporation Process at Air/Water Interface using Hofmeister Ions. J Am Chem Soc 2022; 144:17832-17840. [PMID: 36131621 DOI: 10.1021/jacs.2c05837] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Evaporation is an interfacial phenomenon in which a water molecule breaks the intermolecular hydrogen (H-) bonds and enters the vapor phase. However, a detailed demonstration of the role of interfacial water structure in the evaporation process is still lacking. Here, we purposefully perturb the H-bonding environment at the air/water interface by introducing kosmotropic (HPO4-2, SO4-2, and CO3-2) and chaotropic ions (NO3- and I-) to determine their influence on the evaporation process. Using time-resolved interferometry on aqueous salt droplets, we found that kosmotropes reduce evaporation, whereas chaotropes accelerate the evaporation process, following the Hofmeister series: HPO4-2 < SO4-2 < CO3-2 < Cl- < NO3- < I-. To extract deeper molecular-level insights into the observed Hofmeister trend in the evaporation rates, we investigated the air/water interface in the presence of ions using surface-specific sum frequency generation (SFG) vibrational spectroscopy. The SFG vibrational spectra reveal the significant impact of ions on the strength of the H-bonding environment and the orientation of free OH oscillators from ∼36.2 to 48.4° at the air/water interface, where both the effects follow the Hofmeister series. It is established that the slow evaporating water molecules experience a strong H-bonding environment with free OH oscillators tilted away from the surface normal in the presence of kosmotropes. In contrast, the fast evaporating water molecules experience a weak H-bonding environment with free OH oscillators tilted toward the surface normal in the presence of chaotropes at the air/water interface. Our experimental outcomes showcase the complex bonding environment of interfacial water molecules and their decisive role in the evaporation process.
Collapse
Affiliation(s)
- Bhawna Rana
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - David J Fairhurst
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, United Kingdom
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.,Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
5
|
Rehl B, Ma E, Parshotam S, DeWalt-Kerian EL, Liu T, Geiger FM, Gibbs JM. Water Structure in the Electrical Double Layer and the Contributions to the Total Interfacial Potential at Different Surface Charge Densities. J Am Chem Soc 2022; 144:16338-16349. [PMID: 36042195 DOI: 10.1021/jacs.2c01830] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The electric double layer governs the processes of all charged surfaces in aqueous solutions; however, elucidating the structure of the water molecules is challenging for even the most advanced spectroscopic techniques. Here, we present the individual Stern layer and diffuse layer OH stretching spectra at the silica/water interface in the presence of NaCl over a wide pH range using a combination of vibrational sum frequency generation spectroscopy, heterodyned second harmonic generation, and streaming potential measurements. We find that the Stern layer water molecules and diffuse layer water molecules respond differently to pH changes: unlike the diffuse layer, whose water molecules remain net-oriented in one direction, water molecules in the Stern layer flip their net orientation as the solution pH is reduced from basic to acidic. We obtain an experimental estimate of the non-Gouy-Chapman (Stern) potential contribution to the total potential drop across the insulator/electrolyte interface and discuss it in the context of dipolar, quadrupolar, and higher order potential contributions that vary with the observed changes in the net orientation of water in the Stern layer. Our findings show that a purely Gouy-Chapman (Stern) view is insufficient to accurately describe the electrical double layer of aqueous interfaces.
Collapse
Affiliation(s)
- Benjamin Rehl
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Emily Ma
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shyam Parshotam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Emma L DeWalt-Kerian
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianli Liu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
7
|
Interfacial hydration determines orientational and functional dimorphism of sterol-derived Raman tags in lipid-coated nanoparticles. Proc Natl Acad Sci U S A 2021; 118:2105913118. [PMID: 34389679 DOI: 10.1073/pnas.2105913118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipid-coated noble metal nanoparticles (L-NPs) combine the biomimetic surface properties of a self-assembled lipid membrane with the plasmonic properties of a nanoparticle (NP) core. In this work, we investigate derivatives of cholesterol, which can be found in high concentrations in biological membranes, and other terpenoids, as tunable, synthetic platforms to functionalize L-NPs. Side chains of different length and polarity, with a terminal alkyne group as Raman label, are introduced into cholesterol and betulin frameworks. The synthesized tags are shown to coexist in two conformations in the lipid layer of the L-NPs, identified as "head-out" and "head-in" orientations, whose relative ratio is determined by their interactions with the lipid-water hydrogen-bonding network. The orientational dimorphism of the tags introduces orthogonal functionalities into the NP surface for selective targeting and plasmon-enhanced Raman sensing, which is utilized for the identification and Raman imaging of epidermal growth factor receptor-overexpressing cancer cells.
Collapse
|
8
|
Dalchand N, Cui Q, Geiger FM. Electrostatics, Hydrogen Bonding, and Molecular Structure at Polycation and Peptide:Lipid Membrane Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21149-21158. [PMID: 31889444 DOI: 10.1021/acsami.9b17431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polycation and peptide-modified surfaces represent opportunities for developing potentially novel biocidal materials in a growing effort to combat bacterial resistance to traditional bactericides. It is well-known that the positive charge of these compounds is crucial to their function in biofouling prevention and as antimicrobials; however, methods for quantifying the number of positive charges on surface-bound polycations and peptides are necessary to predict, control, and optimize the design and therefore the utility of these compounds. This Spotlight on Applications reports on such an approach that combines second harmonic generation (SHG) spectroscopy, quartz crystal microbalance with dissipation monitoring (QCM-D), and atomistic simulations to obtain mechanistic insight into polycation-membrane interactions using supported lipid bilayers (SLBs) as our model system. We find that at high surface coverage, the large polycations we surveyed feature a considerably smaller percentage of ionization when compared to the smaller polycations and peptides. At these high charge densities, we suspect a pKa shift of the charged groups to lower charge-charge repulsion as well as the formation of a looplike conformation such that less monomeric units form contact-ion pairs with the bilayer. Our sum frequency generation (SFG) spectroscopy results complement our understanding of the polycation-membrane interaction. At a high density of the polycation poly(allylamine hydrochloride) (PAH), second-order spectral line shapes are consistent with the expulsion of interfacial water molecules possibly due to contact-ion pair formation between PAH and the lipid bilayer. This finding could be essential for understanding the underlying first steps of cell lysis and penetration by polycations and should be explored further.
Collapse
Affiliation(s)
- Naomi Dalchand
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| |
Collapse
|
9
|
Li S, Wu L, Zhang X, Jiang X. The Structure of Water Bonded to Phosphate Groups at the Electrified Zwitterionic Phospholipid Membranes/Aqueous Interface. Angew Chem Int Ed Engl 2020; 59:6627-6630. [DOI: 10.1002/anie.202000511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022, Jilin China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lie Wu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022, Jilin China
| | - Xiaofei Zhang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022, Jilin China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022, Jilin China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
10
|
Li S, Wu L, Zhang X, Jiang X. The Structure of Water Bonded to Phosphate Groups at the Electrified Zwitterionic Phospholipid Membranes/Aqueous Interface. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022, Jilin China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lie Wu
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022, Jilin China
| | - Xiaofei Zhang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022, Jilin China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022, Jilin China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
11
|
Chang H, Ohno PE, Liu Y, Lozier EH, Dalchand N, Geiger FM. Direct Measurement of Charge Reversal on Lipid Bilayers Using Heterodyne-Detected Second Harmonic Generation Spectroscopy. J Phys Chem B 2020; 124:641-649. [DOI: 10.1021/acs.jpcb.9b09341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- HanByul Chang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Paul E. Ohno
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Yangdongling Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Emilie H. Lozier
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Naomi Dalchand
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| |
Collapse
|
12
|
Chowdhury AU, Taylor GJ, Bocharova V, Sacci RL, Luo Y, McClintic WT, Ma YZ, Sarles SA, Hong K, Collier CP, Doughty B. Insight into the Mechanisms Driving the Self-Assembly of Functional Interfaces: Moving from Lipids to Charged Amphiphilic Oligomers. J Am Chem Soc 2019; 142:290-299. [PMID: 31801348 DOI: 10.1021/jacs.9b10536] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies. In this work, we provide new mechanistic insight into the assembly of an amphiphilic polymer-stabilized oil/aqueous interface, in which the headgroups consist of positively charged methylimidazolium ionic liquids, and the tails are short, monodisperse oligodimethylsiloxanes covalently attached to the headgroups. We demonstrate using vibrational sum frequency generation spectroscopy and pendant drop tensiometery that the composition of the bulk aqueous phase, particularly the ionic strength, dictates the kinetics and structures of the amphiphiles in the organic phase as they decorate the interface. These results show that H-bonding and electrostatic interactions taking place in the aqueous phase bias the grafted oligomer conformations that are adopted in the neighboring oil phase. The kinetics of self-assembly were ionic strength dependent and found to be surprisingly slow, being composed of distinct regimes where molecules adsorb and reorient on relatively fast time scales, but where conformational sampling and frustrated packing takes place over longer time scales. These results set the stage for understanding related chemical phenomena of bioinspired materials in diverse technological and fundamental scientific fields and provide a solid physical foundation on which to design new functional interfaces.
Collapse
|
13
|
Boamah MD, Ohno PE, Lozier E, Van Ardenne J, Geiger FM. Specifics about Specific Ion Adsorption from Heterodyne-Detected Second Harmonic Generation. J Phys Chem B 2019; 123:5848-5856. [DOI: 10.1021/acs.jpcb.9b04425] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mavis D. Boamah
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul E. Ohno
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emilie Lozier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jacqueline Van Ardenne
- Department of Chemistry, University of Puget Sound, Tacoma, Washington 98416, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|