1
|
Tomar RS, Niedzwiedzki DM, Liu H. Altered excitation energy transfer between phycobilisome and photosystems in the absence of ApcG, a small linker peptide, in Synechocystis sp. PCC 6803, a cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149049. [PMID: 38801856 DOI: 10.1016/j.bbabio.2024.149049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Phycobilisome (PBS) is a large pigment-protein complex in cyanobacteria and red algae responsible for capturing sunlight and transferring its energy to photosystems (PS). Spectroscopic and structural properties of various PBSs have been widely studied, however, the nature of so-called complex-complex interactions between PBS and PSs remains much less explored. In this work, we have investigated the function of a newly identified PBS linker protein, ApcG, some domain of which, together with a loop region (PB-loop in ApcE), is possibly located near the PBS-PS interface. Using Synechocystis sp. PCC 6803, we generated an ApcG deletion mutant and probed its deletion effect on the energetic coupling between PBS and photosystems. Steady-state and time-resolved spectroscopic characterization of the purified ΔApcG-PBS demonstrated that ApcG removal weakly affects the photophysical properties of PBS for which the spectroscopic properties of terminal energy emitters are comparable to those of PBS from wild-type strain. However, analysis of fluorescence decay imaging datasets reveals that ApcG deletion induces disruptions within the allophycocyanin (APC) core, resulting in the emergence (splitting) of two spectrally diverse subgroups with some short-lived APC. Profound spectroscopic changes of the whole ΔApcG mutant cell, however, emerge during state transition, a dynamic process of light scheme adaptation. The mutant cells in State I show a substantial increase in PBS-related fluorescence. On the other hand, global analysis of time-resolved fluorescence demonstrates that in general ApcG deletion does not alter or inhibit state transitions interpreted in terms of the changes of the PSII and PSI fluorescence emission intensity. The results revealed yet-to-be discovered mechanism of ApcG-docking induced excitation energy transfer regulation within PBS or to Photosystems.
Collapse
Affiliation(s)
- Rupal Singh Tomar
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Haijun Liu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA.
| |
Collapse
|
2
|
Guo R, Xu YL, Zhu JX, Scheer H, Zhao KH. Assembly of CpcL-phycobilisomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1207-1217. [PMID: 38319793 DOI: 10.1111/tpj.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three β82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and β153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.
Collapse
Affiliation(s)
- Rui Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Li Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jun-Xun Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
3
|
Zheng L, Zhang Z, Wang H, Zheng Z, Wang J, Liu H, Chen H, Dong C, Wang G, Weng Y, Gao N, Zhao J. Cryo-EM and femtosecond spectroscopic studies provide mechanistic insight into the energy transfer in CpcL-phycobilisomes. Nat Commun 2023; 14:3961. [PMID: 37407580 DOI: 10.1038/s41467-023-39689-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Phycobilisomes (PBS) are the major light harvesting complexes of photosynthesis in the cyanobacteria and red algae. CpcL-PBS is a type of small PBS in cyanobacteria that transfers energy directly to photosystem I without the core structure. Here we report the cryo-EM structure of the CpcL-PBS from the cyanobacterium Synechocystis sp. PCC 6803 at 2.6-Å resolution. The structure shows the CpcD domain of ferredoxin: NADP+ oxidoreductase is located at the distal end of CpcL-PBS, responsible for its attachment to PBS. With the evidence of ultrafast transient absorption and fluorescence spectroscopy, the roles of individual bilins in energy transfer are revealed. The bilin 1Iβ822 located near photosystem I has an enhanced planarity and is the red-bilin responsible for the direct energy transfer to photosystem I.
Collapse
Affiliation(s)
- Lvqin Zheng
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China
| | - Zhengdong Zhang
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Hongrui Wang
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Heyuan Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunxia Dong
- School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Guopeng Wang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ning Gao
- School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory of Membrane Biology, Peking University, Beijing, 100871, China.
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Liu H. Cyanobacterial Phycobilisome Allostery as Revealed by Quantitative Mass Spectrometry. Biochemistry 2023; 62:1307-1320. [PMID: 36943676 DOI: 10.1021/acs.biochem.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Phycobilisomes (PBSs) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. PBS, a multisubunit protein complex, has two major interfaces that comprise intrinsically disordered regions (IDRs): rod-core and core-membrane. IDRs do not form regular, three-dimensional structures on their own. Their presence in the photosynthetic pigment-protein complexes portends their structural and functional importance. A recent model suggests that PB-loop, an IDR located on the PBS subunit ApcE and C-terminal extension (CTE) of the PBS subunit ApcG, forms a structural protrusion on the PBS core-membrane side, facing the thylakoid membrane. Here, the structural synergy between the rod-core region and the core-membrane region was investigated using quantitative mass spectrometry (MS). The AlphaFold-predicted CpcG-CTE structure was first modeled onto the PBS rod-core region, guided and justified by the isotopically encoded structural MS data. Quantitative cross-linking MS analysis revealed that the structural proximity of the PB-loop in ApcE and ApcG-CTE is significantly disturbed in the absence of six PBS rods, which are attached to PBS via CpcG-CTE, indicative of drastic conformational changes and decreased structural integrity. These results suggest that CpcG-rod attachment on the PBS rod-core side is essentially required for the PBS core-membrane structural assembly. The hypothesized long-range synergy between the rod-core interface (where the orange carotenoid protein also functions) and the terminal energy emitter of PBS must have important regulatory roles in PBS core assembly, light-harvesting, and excitation energy transmission. These data also lend strategies that genetic truncation of the light-harvesting antennas aimed for improved photosynthetic productivity must rely on an in-depth understanding of their global structural integrity.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Attachment of Ferredoxin: NADP+ Oxidoreductase to Phycobilisomes Is Required for Photoheterotrophic Growth of the Cyanobacterium Synechococcus sp. PCC 7002. Microorganisms 2022; 10:microorganisms10071313. [PMID: 35889032 PMCID: PMC9319322 DOI: 10.3390/microorganisms10071313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Two types of cyanobacterial phycobilisomes (PBS) are present: the hemidiscoidal PBS (CpcG-PBS) and the membrane-bound PBS (CpcL-PBS). Both types of PBS have ferredoxin:NADP+ oxidoreductase (FNR) attached to the termini of their rods through a CpcD domain. To date, the physiological significance of the attachment remains unknown. We constructed a mutant (dF338) which contains an FNR lacking the N-terminal CpcD domain in Synechococcus sp. PCC 7002. Isolated CpcG-PBS from dF338 did not contain FNR and the cell extracts of the mutant had a 35 kDa protein cross-reacting to anti-FNR antibodies. dF338 grows normally under photoautotrophic conditions, but little growth was observed under photoheterotrophic conditions. A cpcL (cpcG2) mutant grows extremely slowly under photoheterotrophic conditions while a cpcG (cpcG1) mutant, in which PBS rods could not attach to the cores of the CpcG-PBS, can grow photoheterotrophically, strongly suggesting that the attachment of FNR to CpcL-PBS is critical to photoheterotrophic growth. We show that electron transfer to the plastoquinone pool in dF338 and the cpcL mutant was impaired. We also provide evidence that trimeric photosystem I (PSI) and intact CpcL-PBS with a full-length FNR is critical to plastoquinone reduction. The presence of a NADPH-dehydrogenase (NDH)-CpcL-PBS-PSI trimer supercomplex and its roles are discussed.
Collapse
|
6
|
Puzorjov A, Dunn KE, McCormick AJ. Production of thermostable phycocyanin in a mesophilic cyanobacterium. Metab Eng Commun 2021; 13:e00175. [PMID: 34168957 PMCID: PMC8209669 DOI: 10.1016/j.mec.2021.e00175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 11/01/2022] Open
Abstract
Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (cpcBACD) is functional in the mesophile Synechocystis sp. PCC 6803. Expression of cpcBACD in an 'Olive' mutant strain of Synechocystis lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g-1 DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from T. elongatus, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from T. elongatus in Synechocystis cultures. Our model showed that the higher yields and lower cultivation temperatures of Synechocystis resulted in a 3.5-fold increase in energy efficiency compared to T. elongatus, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Katherine E. Dunn
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Alistair J. McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
7
|
Puzorjov A, McCormick AJ. Phycobiliproteins from extreme environments and their potential applications. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3827-3842. [PMID: 32188986 DOI: 10.1093/jxb/eraa139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment-proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
8
|
Akhtar P, Biswas A, Petrova N, Zakar T, van Stokkum IHM, Lambrev PH. Time-resolved fluorescence study of excitation energy transfer in the cyanobacterium Anabaena PCC 7120. PHOTOSYNTHESIS RESEARCH 2020; 144:247-259. [PMID: 32076913 PMCID: PMC7203587 DOI: 10.1007/s11120-020-00719-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/07/2020] [Indexed: 05/28/2023]
Abstract
Excitation energy transfer (EET) and trapping in Anabaena variabilis (PCC 7120) intact cells, isolated phycobilisomes (PBS) and photosystem I (PSI) complexes have been studied by picosecond time-resolved fluorescence spectroscopy at room temperature. Global analysis of the time-resolved fluorescence kinetics revealed two lifetimes of spectral equilibration in the isolated PBS, 30-35 ps and 110-130 ps, assigned primarily to energy transfer within the rods and between the rods and the allophycocyanin core, respectively. An additional intrinsic kinetic component with a lifetime of 500-700 ps was found, representing non-radiative decay or energy transfer in the core. Isolated tetrameric PSI complexes exhibited biexponential fluorescence decay kinetics with lifetimes of about 10 ps and 40 ps, representing equilibration between the bulk antenna chlorophylls with low-energy "red" states and trapping of the equilibrated excitations, respectively. The cascade of EET in the PBS and in PSI could be resolved in intact filaments as well. Virtually all energy absorbed by the PBS was transferred to the photosystems on a timescale of 180-190 ps.
Collapse
Affiliation(s)
- Parveen Akhtar
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
- ELI-ALPS, ELI-HU Nonprofit Ltd., Wolfgang Sandner u. 3, Szeged, 6728, Hungary
| | - Avratanu Biswas
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Nia Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad G. Bontchev Str., Bl. 21, 1113, Sofia, Bulgaria
| | - Tomas Zakar
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Petar H Lambrev
- Biological Research Centre, Szeged, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
9
|
Wahadoszamen M, Krüger TPJ, Ara AM, van Grondelle R, Gwizdala M. Charge transfer states in phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148187. [PMID: 32173383 DOI: 10.1016/j.bbabio.2020.148187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Phycobilisomes (PBs) absorb light and supply downstream photosynthetic processes with excitation energy in many cyanobacteria and algae. In response to a sudden increase in light intensity, excess excitation energy is photoprotectively dissipated in PBs by means of the orange carotenoid protein (OCP)-related mechanism or via a light-activated intrinsic decay channel. Recently, we have identified that both mechanisms are associated with far-red emission states. Here, we investigate the far-red states involved with the light-induced intrinsic mechanism by exploring the energy landscape and electro-optical properties of the pigments in PBs. While Stark spectroscopy showed that the far-red states in PBs exhibit a strong charge-transfer (CT) character at cryogenic temperatures, single molecule spectroscopy revealed that CT states should also be present at room temperature. Owing to the strong environmental sensitivity of CT states, the knowledge gained from this study may contribute to the design of a new generation of fluorescence markers.
Collapse
Affiliation(s)
- Md Wahadoszamen
- Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa
| | - Anjue Mane Ara
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Rienk van Grondelle
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Pretoria 0023, South Africa; Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
| |
Collapse
|
10
|
A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection. Proc Natl Acad Sci U S A 2020; 117:6502-6508. [PMID: 32139606 DOI: 10.1073/pnas.1920923117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment-protein complexes. The carbon-carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) from Rhodobacter sphaeroides containing the N = 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S1 state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChls a These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S1 → Qx route because the S1 → S0 fluorescence emission of ζ-carotene overlaps almost perfectly with the Qx absorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the native N ≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChl a, likely due to elevation of the ζ-carotene triplet energy state above that of BChl a These findings provide insights into the coevolution of photosynthetic pigments and pigment-protein complexes. We propose that the N ≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.
Collapse
|
11
|
On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148079. [PMID: 31518567 DOI: 10.1016/j.bbabio.2019.148079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/30/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023]
Abstract
Photosynthetic pigment-protein complexes (PPCs) accomplish light-energy capture and photochemistry in natural photosynthesis. In this review, we examine three pigment protein complexes in oxygenic photosynthesis: light-harvesting antenna complexes and two reaction centers: Photosystem II (PSII), and Photosystem I (PSI). Recent technological developments promise unprecedented insights into how these multi-component protein complexes are assembled into higher order structures and thereby execute their function. Furthermore, the interfacial domain between light-harvesting antenna complexes and PSII, especially the potential roles of the structural loops from CP29 and the PB-loop of ApcE in higher plant and cyanobacteria, respectively, are discussed. It is emphasized that the structural nuances are required for the structural dynamics and consequently for functional regulation in response to an ever-changing and challenging environment.
Collapse
|