1
|
Love O, Galindo-Murillo R, Roe DR, Dans PD, Cheatham III TE, Bergonzo C. modXNA: A Modular Approach to Parametrization of Modified Nucleic Acids for Use with Amber Force Fields. J Chem Theory Comput 2024; 20:9354-9363. [PMID: 39468889 PMCID: PMC11562377 DOI: 10.1021/acs.jctc.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Modified nucleic acids have surged as a popular therapeutic route, emphasizing the importance of nucleic acid research in drug discovery and development. Beyond well-known RNA vaccines, antisense oligonucleotides and aptamers can incorporate various modified nucleic acids to target specific biomolecules for various therapeutic activities. Molecular dynamics simulations can accelerate the design and development of these systems with noncanonical nucleic acids by observing intricate dynamic properties and relative stability on the all-atom level. However, modeling these modified systems is challenging due to the time and resources required to parametrize components outside default force field parameters. Here, we present modXNA, a tool to derive and build modified nucleotides for use with Amber force fields. Several nucleic acid systems varying in size and number of modification sites were used to evaluate the accuracy of modXNA parameters, and results indicate the dynamics and structure are preserved throughout the simulations. We detail the protocol for quantum mechanics charge derivation and describe a workflow for implementing modXNA in Amber molecular dynamics simulations, which includes updates and added features to CPPTRAJ.
Collapse
Affiliation(s)
- Olivia Love
- Department
of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 306, Salt Lake City, Utah 84112, United States
| | - Rodrigo Galindo-Murillo
- Department
of Medicinal Chemistry, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Daniel R. Roe
- Laboratory
of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Pablo D. Dans
- Computational
Biophysics Group, Department of Biological Sciences, CENUR Litoral
Norte, Universidad de la República, Salto 50000, Uruguay
- Bioinformatics
Unit. Institute Pasteur of Montevideo, Montevideo 11400, Uruguay
| | - Thomas E. Cheatham III
- Department
of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 306, Salt Lake City, Utah 84112, United States
| | - Christina Bergonzo
- Institute
for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University
of Maryland, 9600 Gudelsky Way, Rockville, Maryland 20850, United States
| |
Collapse
|
2
|
Gandhi VD, Hua L, Lawrenz M, Latif M, Rolland AD, Campuzano IDG, Larriba-Andaluz C. Elucidating Protein Structures in the Gas Phase: Traversing Configuration Space with Biasing Methods. J Chem Theory Comput 2024; 20:9720-9733. [PMID: 39439194 DOI: 10.1021/acs.jctc.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Achieving accurate characterization of protein structures in the gas phase continues to be a formidable challenge. To tackle this issue, the present study employs Molecular Dynamics (MD) simulations in tandem with enhanced sampling techniques (methods designed to efficiently explore protein conformations). The objective is to identify suitable structures of proteins by contrasting their calculated Collision Cross-Section (CCS) with those observed experimentally. Significant discrepancies were observed between the initial MD-simulated and experimentally measured CCS values through Ion Mobility-Mass Spectrometry (IMS-MS). To bridge this gap, we employed two distinct enhanced sampling methods, Harmonic Biasing Potential and Adaptive Biasing Force, which help the proteins overcome energy barriers to adopt more compact configurations. These techniques leverage the radius of gyration as a reaction coordinate (guiding parameter), guiding the system toward compressed states that potentially match experimental configurations more closely. The guiding forces are only employed to overcome existing barriers and are removed to allow the protein to naturally arrive at a potential gas phase configuration. The results demonstrated close alignment (within ∼4%) between simulated and experimental CCS values despite using different strengths and/or methods, validating their efficacy. This work lays the groundwork for future studies aimed at optimizing biasing methods and expanding the collective variables used for more accurate gas-phase structural predictions.
Collapse
Affiliation(s)
- Viraj D Gandhi
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Leyan Hua
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Morgan Lawrenz
- Molecular Analytics, AMGEN Research, Thousand Oaks, California 91320, United States
| | - Mohsen Latif
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Iain D G Campuzano
- Molecular Analytics, AMGEN Research, Thousand Oaks, California 91320, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| |
Collapse
|
3
|
Duez Q, Hoyas S, Josse T, Cornil J, Gerbaux P, De Winter J. Gas-phase structure of polymer ions: Tying together theoretical approaches and ion mobility spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:1129-1151. [PMID: 34747528 DOI: 10.1002/mas.21745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/07/2023]
Abstract
An increasing number of studies take advantage of ion mobility spectrometry (IMS) coupled to mass spectrometry (IMS-MS) to investigate the spatial structure of gaseous ions. Synthetic polymers occupy a unique place in the field of IMS-MS. Indeed, due to their intrinsic dispersity, they offer a broad range of homologous ions with different lengths. To help rationalize experimental data, various theoretical approaches have been described. First, the study of trend lines is proposed to derive physicochemical and structural parameters. However, the evaluation of data fitting reflects the overall behavior of the ions without reflecting specific information on their conformation. Atomistic simulations constitute another approach that provide accurate information about the ion shape. The overall scope of this review is dedicated to the synergy between IMS-MS and theoretical approaches, including computational chemistry, demonstrating the essential role they play to fully understand/interpret IMS-MS data.
Collapse
Affiliation(s)
- Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| | - Sébastien Hoyas
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| | | | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, UMONS, Mons, Belgium
| |
Collapse
|
4
|
Wang B, Tieleman DP. Release of nanodiscs from charged nano-droplets in the electrospray ionization revealed by molecular dynamics simulations. Commun Chem 2023; 6:21. [PMID: 36717705 PMCID: PMC9886951 DOI: 10.1038/s42004-023-00818-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Electrospray ionization (ESI) is essential for application of mass spectrometry in biological systems, as it prevents the analyte being split into fragments. However, due to lack of a clear understanding of the mechanism of ESI, the interpretation of mass spectra is often ambiguous. This is a particular challenge for complex biological systems. Here, we focus on systems that include nanodiscs as membrane environment, which are essential for membrane proteins. We performed microsecond atomistic molecular dynamics simulations to study the release of nanodiscs from highly charged nano-droplets into the gas phase, the late stage of ESI. We observed two distinct major scenarios, highlighting the diversity of morphologies of gaseous product ions. Our simulations are in reasonable agreement with experimental results. Our work provides a detailed atomistic view of the ESI process of a heterogeneous system (lipid nanodisc), which may give insights into the interpretation of mass spectra of all lipid-protein systems.
Collapse
Affiliation(s)
- Beibei Wang
- grid.20513.350000 0004 1789 9964Centre for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 People’s Republic of China
| | - D. Peter Tieleman
- grid.22072.350000 0004 1936 7697Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, T2N 1N4 Canada
| |
Collapse
|
5
|
Nash S, Vachet RW. Gas-Phase Unfolding of Protein Complexes Distinguishes Conformational Isomers. J Am Chem Soc 2022; 144:22128-22139. [PMID: 36414315 DOI: 10.1021/jacs.2c09573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteins can adopt different conformational states that are important for their biological function and, in some cases, can be responsible for their dysfunction. The essential roles that proteins play in biological systems make distinguishing the structural differences between these conformational states both fundamentally and practically important. Here, we demonstrate that collision-induced unfolding (CIU), in combination with ion mobility-mass spectrometry (IM-MS) measurements, distinguish subtly different conformational states for protein complexes. Using the open and closed states of the β-lactoglobulin (βLG) dimer as a model, we show that these two conformational isomers unfold during collisional activation to generate distinct states that are readily separated by IM-MS. Extensive molecular modeling of the CIU process reproduces the distinct unfolding intermediates and identifies the molecular details that explain why the two conformational states unfold in distinct ways. Strikingly, the open conformational state forms new electrostatic interactions upon collisional heating, while the closed state does not. These newly formed electrostatic interactions involve residues on the loop differentially positioned in the two βLG conformational isomers, highlighting that gas-phase unfolding pathways reflect aspects of solution structure. This combination of experiment and theory provides a path forward for distinguishing subtly different conformational isomers for protein complexes via gas-phase unfolding experiments. Our results also have implications for understanding how protein complexes dissociate in the gas phase, indicating that current models need to be refined to explain protein complex dissociation.
Collapse
Affiliation(s)
- Stacey Nash
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 United States
| |
Collapse
|
6
|
Rolland AD, Biberic LS, Prell JS. Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility-Mass Spectrometry and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:369-381. [PMID: 35073092 PMCID: PMC11404549 DOI: 10.1021/jasms.1c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise relationship between native gas-phase protein ion structure, charge, desolvation, and activation remains elusive. Much evidence supports the Charge Residue Model for native protein ions formed by electrospray ionization, but scaling laws derived from it relate only to overall ion size. Closer examination of drift tube CCSs across individual native protein ion charge state distributions (CSDs) reveals deviations from global trends. To investigate whether this is due to structure variation across CSDs or contributions of long-range charge-dipole interactions, we performed in vacuo force field molecular dynamics (MD) simulations of multiple charge conformers of three proteins representing a variety of physical and structural features: β-lactoglobulin, concanavalin A, and glutamate dehydrogenase. Results from these simulated ions indicate subtle structure variation across their native CSDs, although effects of these structural differences and long-range charge-dependent interactions on CCS are small. The structure and CCS of smaller proteins may be more sensitive to charge due to their low surface-to-volume ratios and reduced capacity to compact. Secondary and higher order structure from condensed-phase structures is largely retained in these simulations, supporting the use of the term "native-like" to describe results from native ion mobility-mass spectrometry experiments, although, notably, the most compact structure can be the most different from the condensed-phase structure. Collapse of surface side chains to self-solvate through formation of new hydrogen bonds is a major feature of gas-phase compaction and likely occurs during the desolvation process. Results from these MD simulations provide new insight into the relationship of gas-phase protein ion structure, charge, and CCS.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lejla S Biberic
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
7
|
Mikhailovskii O, Xue Y, Skrynnikov NR. Modeling a unit cell: crystallographic refinement procedure using the biomolecular MD simulation platform Amber. IUCRJ 2022; 9:114-133. [PMID: 35059216 PMCID: PMC8733891 DOI: 10.1107/s2052252521011891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
A procedure has been developed for the refinement of crystallographic protein structures based on the biomolecular simulation program Amber. The procedure constructs a model representing a crystal unit cell, which generally contains multiple protein molecules and is fully hydrated with TIP3P water. Periodic boundary conditions are applied to the cell in order to emulate the crystal lattice. The refinement is conducted in the form of a specially designed short molecular-dynamics run controlled by the Amber ff14SB force field and the maximum-likelihood potential that encodes the structure-factor-based restraints. The new Amber-based refinement procedure has been tested on a set of 84 protein structures. In most cases, the new procedure led to appreciably lower R free values compared with those reported in the original PDB depositions or obtained by means of the industry-standard phenix.refine program. In particular, the new method has the edge in refining low-accuracy scrambled models. It has also been successful in refining a number of molecular-replacement models, including one with an r.m.s.d. of 2.15 Å. In addition, Amber-refined structures consistently show superior MolProbity scores. The new approach offers a highly realistic representation of protein-protein interactions in the crystal, as well as of protein-water interactions. It also offers a realistic representation of protein crystal dynamics (akin to ensemble-refinement schemes). Importantly, the method fully utilizes the information from the available diffraction data, while relying on state-of-the-art molecular-dynamics modeling to assist with those elements of the structure that do not diffract well (for example mobile loops or side chains). Finally, it should be noted that the protocol employs no tunable parameters, and the calculations can be conducted in a matter of several hours on desktop computers equipped with graphical processing units or using a designated web service.
Collapse
Affiliation(s)
- Oleg Mikhailovskii
- Laboratory of Biomolecular NMR, St Petersburg State University, St Petersburg 199034, Russian Federation
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Xue
- School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, People’s Republic of China
- Tsinghua University–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St Petersburg State University, St Petersburg 199034, Russian Federation
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Sever AIM, Yin V, Konermann L. Interrogating the Quaternary Structure of Noncanonical Hemoglobin Complexes by Electrospray Mass Spectrometry and Collision-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:270-280. [PMID: 33124417 DOI: 10.1021/jasms.0c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various activation methods are available for the fragmentation of gaseous protein complexes produced by electrospray ionization (ESI). Such experiments can potentially yield insights into quaternary structure. Collision-induced dissociation (CID) is the most widely used fragmentation technique. Unfortunately, CID of protein complexes is dominated by the ejection of highly charged monomers, a process that does not yield any structural insights. Using hemoglobin (Hb) as a model system, this work examines under what conditions CID generates structurally informative subcomplexes. Native ESI mainly produced tetrameric Hb ions. In addition, "noncanonical" hexameric and octameric complexes were observed. CID of all these species [(αβ)2, (αβ)3, and (αβ)4] predominantly generated highly charged monomers. In addition, we observed hexamer → tetramer + dimer dissociation, implying that hexamers have a tetramer··dimer architecture. Similarly, the observation of octamer → two tetramer dissociation revealed that octamers have a tetramer··tetramer composition. Gas-phase candidate structures of Hb assemblies were produced by molecular dynamics (MD) simulations. Ion mobility spectrometry was used to identify the most likely candidates. Our data reveal that the capability of CID to produce structurally informative subcomplexes depends on the fate of protein-protein interfaces after transfer into the gas phase. Collapse of low affinity interfaces conjoins the corresponding subunits and favors CID via monomer ejection. Structurally informative subcomplexes are formed only if low affinity interfaces do not undergo a major collapse. However, even in these favorable cases CID is still dominated by monomer ejection, requiring careful analysis of the experimental data for the identification of structurally informative subcomplexes.
Collapse
Affiliation(s)
- Alexander I M Sever
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Sever AIM, Konermann L. Gas Phase Protein Folding Triggered by Proton Stripping Generates Inside-Out Structures: A Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:3667-3677. [DOI: 10.1021/acs.jpcb.0c01934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander I. M. Sever
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
10
|
Simmonds AL, Lopez-Clavijo AF, Winn PJ, Russell DH, Styles IB, Cooper HJ. Structural Analysis of 14-3-3-ζ-Derived Phosphopeptides Using Electron Capture Dissociation Mass Spectrometry, Traveling Wave Ion Mobility Spectrometry, and Molecular Modeling. J Phys Chem B 2020; 124:461-469. [PMID: 31859508 DOI: 10.1021/acs.jpcb.9b08506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previously, we have demonstrated the effect of salt bridges on the electron capture dissociation mass spectrometry behavior of synthetic model phosphopeptides and applied an ion mobility spectrometry/molecular modeling approach to rationalize the findings in terms of peptide ion structure. Here, we develop and apply the approach to a biologically derived phosphopeptide. Specifically, we have investigated variants of a 15-mer phosphopeptide VVGARRSsWRVVSSI (s denotes phosphorylated Ser) derived from Akt1 substrate 14-3-3-ζ, which contains the phosphorylation motif RRSsWR. Variants were generated by successive arginine-to-leucine substitutions within the phosphorylation motif. ECD fragmentation patterns for the eight phosphopeptide variants show greater sequence coverage with successive R → L substitutions. Peptides with two or more basic residues had regions with no sequence coverage, while full sequence coverage was observed for peptides with one or no basic residues. For three of the peptide variants, low-abundance fragments were observed between the phosphoserine and a basic residue, possibly due to the presence of multiple conformers with and without noncovalent interactions between these residues. For the five variants whose dissociation behavior suggested the presence of intramolecular noncovalent interactions, we employed ion mobility spectrometry and molecular modeling to probe the nature of these interactions. Our workflow allowed us to propose candidate structures whose noncovalent interactions were consistent with the ECD data for all of the peptides modeled. Additionally, the AMBER parameter sets created for and validated by this work are presented and made available online ( http://www.biosciences-labs.bham.ac.uk/cooper/datasets.php ).
Collapse
Affiliation(s)
| | | | | | - David H Russell
- Texas A&M University , College Station , Texas 77843 , United States
| | - Iain B Styles
- Centre of Membrane Proteins and Receptors (COMPARE) , Universities of Birmingham and Nottingham , Midlands , U.K
| | | |
Collapse
|