1
|
Nasiri-Foomani N, Ebadi M, Hassani S, Zeinoaldini S, Saedi A, Samadi F. Preparation, characterization, and ex-vivo evaluation of curcumin-loaded niosomal nanoparticles on the equine sperm quality during cooled storage. Int J Biol Macromol 2024; 264:130620. [PMID: 38447838 DOI: 10.1016/j.ijbiomac.2024.130620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/15/2023] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Oxidative damage to sperm during cooled storage is a significant issue, and curcumin, with its antioxidant properties, could be a solution. However, its low bioavailability presents a challenge that this study aims to address. The primary objective of this study was to investigate the potential of curcumin-loaded niosomal nanoparticles (Cur-LNN) to enhance the antioxidant properties of curcumin and its effect on sperm quality during 72 h cooled storage. The thin-film hydration procedure was applied to prepare Cur-LNN. The fabricated noisomal nanocarriers were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy. Moreover, the encapsulation and loading efficiency, in vitro release study, and ex-vivo antioxidant functionality of Cur-LNN on the stallion sperm preserved under cooled storage conditions were assessed. The fabricated Cur-LNN was spherical in shape and had an average particle size of 163.1 ± 1.8 nm, a zeta potential of -34.1 ± 1.9 mV, a poly-dispersity index of 0.339 ± 0.045, an encapsulation efficiency of 92.34 ± 0.18 %, and a loading efficiency of 35.57 ± 1.36 %. Ex-vivo evaluation revealed that supplementation of the semen extender with Cur-LNN has the potential to enhance sperm quality by improving total and progressive motility, plasma membrane functionality, and lipid peroxidation. These results demonstrate that Cur-LNN exhibited stronger antioxidant and protective effects than curcumin. Although further in vivo investigations are warranted, our ex-vivo results suggest that Cur-LNN has the potential to attenuate oxidative damage and can be used to fortify the antioxidant capacity of equine semen under cooled storage conditions.
Collapse
Affiliation(s)
- Niloofar Nasiri-Foomani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Ebadi
- Department of Chemistry, Faculty of Sciences, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Saeed Hassani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Saeed Zeinoaldini
- Department of Animal Science, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran
| | - Aria Saedi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
2
|
Samsoen S, Dudognon É, Le Fer G, Fournier D, Woisel P, Affouard F. Impact of the polymer dispersity on the properties of curcumin/polyvinylpyrrolidone amorphous solid dispersions. Int J Pharm 2024; 653:123895. [PMID: 38346598 DOI: 10.1016/j.ijpharm.2024.123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Amorphous solid dispersions (ASD) are known to enhance the absorption of poorly water-soluble drugs. In this work we synthesise well-defined Polyvinylpyrrolidone (PVP) to establish the impact of dispersity and chain-end functionality on the physical properties of Curcumin (CUR)/PVP ASD. Thermodynamic characterisation of synthesised PVP emphasises a strong effect of the dispersity on the glass transition temperature (Tg), 50 °C higher for synthesised PVP than for commercial PVP K12 of same molar mass. This increase of Tg affects the thermodynamic properties of CUR/PVP ASD successfully formulated up to 70 wt% of CUR by milling or solvent evaporation. The evolution of both the Tg and CUR solubility values versus CUR content points out the development of fairly strong CUR-PVP interactions that strengthen the antiplasticising effect of PVP on the Tg of ASD. However, for ASD formulated with commercial PVP this effect is counterbalanced at low CUR content by a plasticising effect due to the shortest PVP chains. Moreover, the overlay of the phase and state diagrams highlights the strong impact of the polymer dispersity on the stability of CUR/PVP ASD. ASD formulated with low dispersity PVP are stable on larger temperature and concentration ranges than those formulated with PVP K12.
Collapse
Affiliation(s)
- Simon Samsoen
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France
| | - Émeline Dudognon
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France.
| | - Gaëlle Le Fer
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France.
| | - David Fournier
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France
| | - Patrice Woisel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France
| | - Frédéric Affouard
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000, Lille, France
| |
Collapse
|
3
|
Mohanty S, Tirkey B, Jena SR, Samanta L, Subuddhi U. Exploring Steroidal Surfactants as Potential Drug Carriers for an Anticancer Drug Curcumin: An Insight into the Effect of Surfactants' Structure on the Photophysical Properties, Stability, and Activity of Curcumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1852-1869. [PMID: 36691916 DOI: 10.1021/acs.langmuir.2c02797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite having tremendous medicinal benefits, the practical applications of curcumin are limited, owing to two major challenges: poor aqueous solubility and lack of bioavailability. In this regard, biosurfactant-based micellar systems have surged recently for the development of novel and more effective formulations because of their biological relevance. This study deals with a comprehensive and comparative investigation on the effect of seven structurally different steroidal surfactants on the photophysical properties of curcumin and also evaluates these steroidal surfactants as possible drug delivery media for curcumin. The photophysical properties of curcumin exhibited a strong dependence on the structure of the steroidal surfactant; the extent of excited-state proton transfer between curcumin and the surfactants depends strongly on the type of the side chain in the surfactants, which mostly dictates the photophysics of curcumin in the presence of these structural variants. The solubility of curcumin and its stability at different pHs and temperatures and in the presence of salt are significantly enhanced in the presence of these surfactants. Furthermore, the curcumin-loaded micelles exhibited improved intracellular uptake and cytotoxicity against MCF-7 cancer cells than pristine curcumin. Among these steroidal surfactants, CHAPS, the zwitterionic derivative of cholic acid, was the most efficient one to offer better solubility and stability to curcumin under all conditions, and the death rate of MCF-7 cells by curcumin was found to be the highest in the presence of CHAPS, indicating the enhanced bioavailability of curcumin. Therefore, CHAPS-based colloids are found to be promising candidates as potential drug carriers for curcumin.
Collapse
Affiliation(s)
- Subhrajit Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| | - Binita Tirkey
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| | - Soumya Ranjan Jena
- Department of Zoology, Ravenshaw University, Cuttack, Odisha753003, India
| | - Luna Samanta
- Department of Zoology, Ravenshaw University, Cuttack, Odisha753003, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha769008, India
| |
Collapse
|
4
|
Valentini G, Luis Parize A. Investigation of the interaction between curcumin and hydroxypropyl methylcellulose acetate succinate in solid and solution media. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
Gasbarri C, Angelini G. Combined calorimetric, spectroscopic and microscopic investigation on the inclusion complex from cyclocurcumin and sulfobutylether-β-cyclodextrin in aqueous solution and Kinetics of thermal cis-trans isomerization. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Kazakova O, Lipkovska N, Barvinchenko V. Keto-enol tautomerism of curcumin in the preparation of nanobiocomposites with fumed silica. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121287. [PMID: 35468375 DOI: 10.1016/j.saa.2022.121287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
The tautomerism of curcumin (Cur) in water-ethanol solutions in the presence of fumed silica was studied by UV-visible spectroscopy. The results showed that the enol tautomer exists at an ethanol concentration in solution >50%, and with an increase in the water content, the tautomeric equilibrium shifts towards the formation of the keto tautomer. Quantum-chemical calculations (solvation model SM 5.42/6-31G (d), GAMESSPLUS) of various curcumin isomers confirmed that the existence of curcumin keto tautomer in aqueous solution is more thermodynamically favorable. The ratio of keto and enol forms also depends on the dielectric constant of water-ethanol solutions: at ε < 45, only the enol form of curcumin exists, while at ε > 45, the relative amount of the keto tautomer increases in proportion to the dielectric constant. Curcumin tautomers adsorb on fumed silica in different ways. At a low curcumin concentration in the initial solutions (<1.5 × 10-4 M), only the enol tautomer forms a monolayer on the sorbent surface, apparently due to its planar structure. The keto tautomer, characterized by a bent structure, begins to adsorb only at a concentration of Cur > 1.5 × 10-4 M, being a component of molecular aggregates with coplanar geometry.
Collapse
Affiliation(s)
- Olga Kazakova
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str, Kyiv 03164, Ukraine.
| | - Natalia Lipkovska
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str, Kyiv 03164, Ukraine
| | - Valentyna Barvinchenko
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str, Kyiv 03164, Ukraine
| |
Collapse
|
7
|
Sharmila DJS, Lakshmanan A. Molecular dynamics study of plant bioactive nutraceutical keto-Curcumin encapsulated in medium chain triglyceride oil-in-Water nanoemulsion that are stabilized by globular whey proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Curcumin-Based β-Diketo Ligands for Ga3+: Thermodynamic Investigation of Potential Metal-Based Drugs. Pharmaceuticals (Basel) 2022; 15:ph15070854. [PMID: 35890151 PMCID: PMC9321647 DOI: 10.3390/ph15070854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Curcumin is known for its therapeutic properties; among these, antioxidant, anti-inflammatory and anti-cancer ones stand out. Besides, curcumin metal complexes have shown widespread application in medicine and can be exploited as lead structures for developing metal-based drugs. Unfortunately, curcumin is poorly bioavailable, mainly due to its instability in physiological conditions; this weakness is tightly connected to the presence of the β-diketo moiety undergoing tautomeric equilibrium. Stability and metal-chelating ability can be tuned by modulating the electronic effects and steric hindrance close to the β-diketo moiety; in addition, formation of a metal complex shifts the tautomeric equilibrium towards the β-keto–enol form and increases stability in biological media. Among the metals used in clinical therapy, gallium nitrate has shown to have significant antitumor activity against non-Hodgkin lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents with improved therapeutic activity. Curcuminoids have demonstrated high affinity for gallium(III), allowing the formation of stable positively charged M:L 1:2 β-diketonate complexes that benefit from the therapeutic activity of both the metal and the ligand. Seven new curcumin derivatives were synthesized and completely characterized. The new derivatives retain the solvent-dependent keto–enol tautomerism, with the prevalence of the diketo form in aqueous solution. Enhanced stability in simulated physiological conditions was observed in comparison to the lead compound curcumin. The presence of Ga3+ anticipates the dissociation of the enolic proton, allowing chelate complex formation, and simultaneously it shifts the tautomeric equilibrium towards the keto–enol form. A complete 1H/13C NMR and UV–Vis study was performed to define the metal-to-ligand stoichiometry ratio and the overall stability constants. In addition, we demonstrated that some of the derivatives have increased antiproliferative activity on colon cancer cells compared to curcumin and antioxidant properties. On the whole, the synthesized curcumin-based molecules may act as new gallium(III) chelators with improved stability with respect to curcumin and could open interesting perspectives for the development of novel therapeutic agents for cancer.
Collapse
|
9
|
Chatterjee P, Dutta SS, Chakraborty T. Tautomers and Rotamers of Curcumin: A Combined UV Spectroscopy, High-Performance Liquid Chromatography, Ion Mobility Mass Spectrometry, and Electronic Structure Theory Study. J Phys Chem A 2022; 126:1591-1604. [PMID: 35239351 DOI: 10.1021/acs.jpca.1c08612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The structures of tautomers and rotameric forms of curcumin, the bioactive compound present in spice plant turmeric, have been investigated using ion mobility mass spectrometry (IMMS) in conjunction with high-performance liquid chromatography (HPLC) and UV-visible spectroscopy. Two tautomeric forms of this β-diketone compound, keto-enol and diketo, have been chromatographically separated, and the electronic absorption spectra for these two tautomeric forms in methanol solution have been recorded separately for the first time. The molecular identity of the HPLC-separated solution fractions is established unambiguously by recording the mass and fragmentation spectra simultaneously. The ion mobility spectrum for the deprotonated curcumin anion, [Cur-H]-, corresponding to the diketo tautomer, displays only one peak (P), and the collision cross-section (CCS) value is measured to be 185.9 Å2. However, the ion mobility spectrum corresponding to the HPLC-separated keto-enol tautomer shows three distinctly separated peaks, P, Q, and R, with CCS values of 185.9, 194.8, and 203.4 Å2, respectively, whereby peak R appears to be the most intense one, followed by peaks P and Q. The theoretically calculated CCS values of different isomers of [Cur-H]-, optimized by electronic structure theory methods, display satisfactory correlation with the experimentally observed values, corroborating our assignments. The spectral attributes also indicate the occurrence of structural rearrangements in the electrospray ionization process. With the aid of the electronic structure calculation, low-energy pathways for the occurrence of the structural isomerization to surpass the energy barrier are suggested, which are consistent with the assignments of the peaks observed in the IM spectra.
Collapse
Affiliation(s)
- Piyali Chatterjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhra Sankar Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
11
|
Angelini G, Pasc A, Gasbarri C. Curcumin in silver nanoparticles aqueous solution: Kinetics of keto-enol tautomerism and effects on AgNPs. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Enumo A, Argenta DF, Bazzo GC, Caon T, Stulzer HK, Parize AL. Development of curcumin-loaded chitosan/pluronic membranes for wound healing applications. Int J Biol Macromol 2020; 163:167-179. [PMID: 32615217 DOI: 10.1016/j.ijbiomac.2020.06.253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
The emergence of new materials with improved antibacterial, anti-inflammatory and healing properties compared to conventional wound dressings has both social and economic appeal. In this study, novel chitosan-based (CTS) membranes containing curcumin (CUR) incorporated in Pluronic (PLU) copolymers were developed and characterized to obtain suitable properties for applications as a wound healing dressing. The mechanical, thermal, swelling, wettability, release and permeation properties were evaluated by DSC, TGA, water contact angle measurements, FTIR, fluorescence and microscopic techniques. Membranes containing PLU and CUR presented wettability close to the ideal range for interaction with cellular components (contact angle ~40-70°), improved mechanical properties, higher thermal stability, high swelling degree (>800%) and CUR release (~60%) compared to samples without PLU addition. A higher retention of CUR in the epidermis than in the dermis layer was observed, which also was confirmed by confocal microscopy. Furthermore, the CTS-PLU membranes loaded with CUR showed to be active against Staphylococcus aureus and Pseudomonas aeruginosa (MIC = 25 and 100 mg mL-1, respectively), the microbial species most present in chronic wounds. Overall, the CTS-PLU-CUR membranes presented suitable properties to act as a new wound healing dressing formulation and in vivo studies should be performed to confirm these benefits.
Collapse
Affiliation(s)
- Adalberto Enumo
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Débora Fretes Argenta
- Laboratório de Farmacotécnica e Cosmetologia, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Giovana Carolina Bazzo
- Laboratório de Controle de Qualidade de Fármacos e Medicamentos, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago Caon
- Laboratório de Farmacotécnica e Cosmetologia, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Hellen Karine Stulzer
- Laboratório de Controle de Qualidade de Fármacos e Medicamentos, Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Alexandre Luis Parize
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|