1
|
Kwon O, Zeynep Ayla E, Potts DS, Flaherty DW. Influence of Ti-incorporated Zeolite Topology and Pore Condensation on Vapor Phase Propylene Epoxidation Kinetics with Gaseous H 2O 2. Angew Chem Int Ed Engl 2024; 63:e202405950. [PMID: 38735848 DOI: 10.1002/anie.202405950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Vapor-phase propylene (C3H6) epoxidation kinetics with hydrogen peroxide (H2O2) strongly reflects the physical properties of Ti-incorporated zeolite catalysts and the presence of spectating molecules ("solvent") near active sites even without a bulk liquid phase. Steady-state turnover rates of C3H6 epoxidation and product selectivities vary by orders of magnitudes, depending on the zeolite silanol ((SiOH)x) density, pore topology (MFI, *BEA, FAU), and the quantity of condensed acetonitrile (CH3CN) molecules nearby active sites, under identical reaction mechanisms sharing activated H2O2 intermediates on Ti surfaces. Individual kinetic analyses for propylene oxide (PO) ring-opening, homogeneous diol oxidative cleavage, and homogeneous aldehyde oxidation reveal that secondary reaction kinetics following C3H6 epoxidation responds more sensitively to the changes in zeolite physical properties and pore condensation with CH3CN. Thus, higher PO selectivities achieved in hydrophilic Ti-MFI at steady-state reflect the preferential stabilization of transition states for C3H6 epoxidation (a primary reaction) relative to PO ring-opening and oxidative cleavage (secondary reactions) that solvation effects that reflect interactions among condensed CH3CN within pores and the extended pore structure.
Collapse
Affiliation(s)
- Ohsung Kwon
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - E Zeynep Ayla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Li S, Chen H. Solvent effect in H-BEA catalyzed cyclohexanol dehydration reaction. J Chem Phys 2024; 160:231101. [PMID: 38884394 DOI: 10.1063/5.0211554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
The solvent effect on H-BEA catalyzed cyclohexanol dehydration was investigated in water, dioxane, and cyclohexanol. The dynamic evolution of the Brønsted acid site of zeolite and its interaction with reactant molecules in different solvents were explored with ab initio molecular dynamics simulations, providing reliable configuration sampling to obtain configurations at equilibrium. Solvent profoundly changes the adsorption as well as the dehydration reaction of cyclohexanol in H-BEA, where the reaction is determined to follow the E2 mechanism in water and dioxane but the E1 mechanism in cyclohexanol untill saturation uptake. Near saturation uptake, all three solvents significantly reduce the cyclohexanol dehydration rates in H-BEA. Cyclohexanol loading also dramatically affects the kinetics of the dehydration reaction, displaying an overall decreasing trend with a local minimum present at intermediate loading of 6 molecules per unit cell, which is a result of the entropic effect associated with greater freedom of motion of the transition state. Rigorous quantification of enthalpy and entropy contributions to cyclohexanol adsorption and activation shed light on the solvent effect of zeolite-catalyzed alcohol dehydration.
Collapse
Affiliation(s)
- Sha Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| | - Huimin Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| |
Collapse
|
3
|
Wang C, Chu Y, Lei Q, Hu M, Deng F, Xu J, Dai W. In Situ Observation of Solvent-Mediated Cyclic Intermediates during the Alkene Epoxidation/Hydration over a Ti-Beta/H 2O 2 System. Angew Chem Int Ed Engl 2024; 63:e202404633. [PMID: 38509004 DOI: 10.1002/anie.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Solvent effects in catalytic reactions have received widespread attention as they can promote reaction rates and product selectivities by orders of magnitude. It is well accepted that the stable five-membered cyclic intermediates formed between the solvent molecules and Ti species are crucial to the alkene epoxidation in a heterogeneous Ti(IV)-H2O2 system. However, the direct spectroscopic evidence of these intermediates is still missing and the corresponding reaction pathway for the alkene epoxidation remains unclear. By combining in situ 13C MAS NMR, two-dimensional (2D) 1H-13C heteronuclear correlation (HETCOR) NMR spectroscopy and theoretical calculations, the five-membered ring structures, where the protic solvents (ROH), and aprotic solvent (acetone), coordinate and stabilize the active Ti species, are identified for the first time over Ti-Beta/H2O2 system. Moreover, the role of these cyclic intermediates in the alkene epoxidation/hydration conversion is clarified. These results provide new insights into the solvent effect in liquid-phase epoxidation/hydration reactions over Ti(IV)-H2O2 system.
Collapse
Affiliation(s)
- Chang Wang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Qifeng Lei
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Yu S, Liu Z, Lyu JM, Guo CM, Yang XY, Jiang P, Wang YL, Hu ZY, Sun MH, Li Y, Chen LH, Su BL. Engineering surface framework TiO 6 single sites for unprecedented deep oxidative desulfurization. Natl Sci Rev 2024; 11:nwae085. [PMID: 38577670 PMCID: PMC10989657 DOI: 10.1093/nsr/nwae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Catalytic oxidative desulfurization (ODS) using titanium silicate catalysts has emerged as an efficient technique for the complete removal of organosulfur compounds from automotive fuels. However, the precise control of highly accessible and stable-framework Ti active sites remains highly challenging. Here we reveal for the first time by using density functional theory calculations that framework hexa-coordinated Ti (TiO6) species of mesoporous titanium silicates are the most active sites for ODS and lead to a lower-energy pathway of ODS. A novel method to achieve highly accessible and homogeneously distributed framework TiO6 active single sites at the mesoporous surface has been developed. Such surface framework TiO6 species exhibit an exceptional ODS performance. A removal of 920 ppm of benzothiophene is achieved at 60°C in 60 min, which is 1.67 times that of the best catalyst reported so far. For bulky molecules such as 4,6-dimethyldibenzothiophene (DMDBT), it takes only 3 min to remove 500 ppm of DMDBT at 60°C with our catalyst, which is five times faster than that with the current best catalyst. Such a catalyst can be easily upscaled and could be used for concrete industrial application in the ODS of bulky organosulfur compounds with minimized energy consumption and high reaction efficiency.
Collapse
Affiliation(s)
- Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Jia-Min Lyu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chun-Mu Guo
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao-Yu Yang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Jiang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhi-Yi Hu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Ming-Hui Sun
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, Namur B-5000, Belgium
| |
Collapse
|
5
|
Qin Q, Liu H, Guo Y, Wang B, Zhu J, Ma J. Insights into the mechanism of the solvolysis of propylene oxide over titanium silicalite-1: a theoretical study. Phys Chem Chem Phys 2023; 25:21358-21375. [PMID: 37530074 DOI: 10.1039/d3cp01696j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In order to probe into the mechanism of solvolysis (alcoholysis/hydrolysis) of propylene oxide (PO), the formation of propylene glycol (PG), 1-methoxy-2-propanol (PPM) and 2-methoxy-1-propanol (SPM) over the TS-1 catalyst with tetrahedral Ti and Ti/defect sites was systematically discussed using an embedded quantum mechanical/molecular mechanics (QM/MM) approach. The results showed that the activity of PO solvolysis is closely related to the ring-opening ability of active substances, and the ring-opening ability is in the following order: Si-O(H)-Ti > Ti-OH > 5MR Ti-OOH > Ti-OCH3 (tetrahedral Ti site); 3MR Ti-OOH > Ti-OH > 5MR Ti-OOH > Ti-OCH3 (Ti/defect site). At the tetrahedral site, the concerted mechanism is the dominant pathway for PO ring opening to form PPM, while a competitive relationship exists between stepwise and concerted mechanisms to form PG and SPM. Si-O(H)-Ti exhibits excellent PO ring-opening activity because of its strong Brønsted acidity, but it is difficult to form. At the Ti/defect site, the stepwise mechanism via PO ring opening with 3MR Ti-OOH and then successive hydrolysis/alcoholysis to form product is the dominant pathway. The overall energy barrier of the optimal route is relatively lower as compared to the tetrahedral Ti site. This work opens up a new path for providing more information on the detailed mechanism in the solvolysis of PO over the TS-1 catalyst from a theoretical point of view.
Collapse
Affiliation(s)
- Qiaoyun Qin
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, No. 90, Weijin Road, Nankai District, Tianjin, 300072, China.
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| | - Hongxia Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Yanke Guo
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, No. 90, Weijin Road, Nankai District, Tianjin, 300072, China.
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| | - Baohe Wang
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, No. 90, Weijin Road, Nankai District, Tianjin, 300072, China.
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| | - Jing Zhu
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, No. 90, Weijin Road, Nankai District, Tianjin, 300072, China.
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| | - Jing Ma
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, No. 90, Weijin Road, Nankai District, Tianjin, 300072, China.
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Aquino A, Korup O, Horn R. Liquid Phase Epoxidation of Propylene to Propylene Oxide with Hydrogen Peroxide on Titanium Silicalite-1: Spatially Resolved Measurements and Numerical Simulations. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Andrés Aquino
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, 21073Hamburg, Germany
- Reacnostics GmbH, 20457Hamburg, Germany
| | - Oliver Korup
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, 21073Hamburg, Germany
- Reacnostics GmbH, 20457Hamburg, Germany
| | - Raimund Horn
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, 21073Hamburg, Germany
- Reacnostics GmbH, 20457Hamburg, Germany
| |
Collapse
|
7
|
Pengthong P, Bopp PA, Jungsuttiwong S, Nanok T. Mechanistic insights into the self-esterification of lactic acid under neutral and acidic conditions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Xu H, Xu H, Cheng D. Resolving the Reaction Mechanism for Oxidative Hydration of Ethylene toward Ethylene Glycol by Titanosilicate Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Sun Q, Wang N, Yu J. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104442. [PMID: 34611941 DOI: 10.1002/adma.202104442] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Zeolites possessing large specific surface areas, ordered micropores, and adjustable acidity/basicity have emerged as ideal supports to immobilize metal species with small sizes and high dispersities. In recent years, the zeolite-supported metal catalysts have been widely used in diverse catalytic processes, showing excellent activity, superior thermal/hydrothermal stability, and unique shape-selectivity. In this review, a comprehensive summary of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts are presented for important heterogeneous catalytic processes in the last five years, mainly including 1) the hydrogenation reactions (e.g., CO/CO2 hydrogenation, hydrogenation of unsaturated compounds, and hydrogenation of nitrogenous compounds); 2) dehydrogenation reactions (e.g., alkane dehydrogenation and dehydrogenation of chemical hydrogen storage materials); 3) oxidation reactions (e.g., CO oxidation, methane oxidation, and alkene epoxidation); and 4) other reactions (e.g., hydroisomerization reaction and selective catalytic reduction of NOx with ammonia reaction). Finally, some current limitations and future perspectives on the challenge and opportunity for this subject are pointed out. It is believed that this review will inspire more innovative research on the synthesis and catalysis of zeolite-supported metal catalysts and promote their future developments to meet the emerging demands for practical applications.
Collapse
Affiliation(s)
- Qiming Sun
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jihong Yu
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|