1
|
Coussan S, Aupetit C, Mascetti J, Villenave E, Sobanska S. Hydration of 3-Methyl-1,2,3-butanetricarboxylic Acid Evidenced by Matrix-Isolation Infrared Spectroscopy. J Phys Chem A 2025; 129:1280-1292. [PMID: 39854243 DOI: 10.1021/acs.jpca.4c06743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The hydration mechanism of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a relevant marker of secondary organic aerosol formation from the atmospheric oxidation of α-pinene, has been investigated using the matrix-isolation infrared spectroscopy technique. The experimental results were supported by theoretical calculations. Monomers of MBTCA and heterocomplexes MBTCA-n(H2O) were identified. The presence of intramolecularly H-bonded monomers was experimentally identified, in accordance with the calculations. Heterocomplexes, i.e., aggregates with water, were found much more stable than homocomplexes. The results clearly demonstrate the affinity of MBTCA carboxylic functions for water molecules, and thus its ability to form an H-bond network, leading to the solvation of the molecule. This is the first experimental observation, evidencing the primary hydration stages of one relevant marker of secondary organic aerosol formation and aging. Although fundamental, such a molecular study helps in a better understanding of critical steps in cloud condensation nuclei formation.
Collapse
Affiliation(s)
| | - Christian Aupetit
- Institut des Sciences Moléculaires, UMR CNRS 5255, Univ. Bordeaux, Talence cedex F-33405, France
| | - Joëlle Mascetti
- Institut des Sciences Moléculaires, UMR CNRS 5255, Univ. Bordeaux, Talence cedex F-33405, France
| | - Eric Villenave
- CNRS, EPOC, EPHE, UMR 5805 CNRS, Univ. Bordeaux, Pessac cedex F-33615, France
| | - Sophie Sobanska
- Institut des Sciences Moléculaires, UMR CNRS 5255, Univ. Bordeaux, Talence cedex F-33405, France
| |
Collapse
|
2
|
Carril P, Cordeiro C, Silva MS, Ngendahimana E, Tenreiro R, Cruz C. Exploring the plant-growth promoting bacterium Herbaspirillum seropedicae as catalyst of microbiome remodeling and metabolic changes in wheat plants. PLANTA 2025; 261:36. [PMID: 39809904 DOI: 10.1007/s00425-025-04609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously. In this study, both 16S amplicon and ITS sequencing analyses were carried out to study both the structural as well as the putative functional changes in the seed-borne endophytic microbiome of wheat plants inoculated with the PGPB Herbaspirillum seropedicae strain RAM10. Concomitantly, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analyses were used to investigate the alterations in the root metabolome of PGPB-inoculated plants. PGPB inoculation led to marked differences in the composition of the root microbiome, accompanied by the differential enrichment of microorganisms with putative roles in both plant energy and nitrogen metabolism. In addition, metabolome analyses showed that the levels of 16 metabolites belonging to the phenylpropanoid, terpenoid, and unsaturated fatty acid families were significantly altered in PGPB-inoculated plants. These findings shed light on the interplay between PGPB, the plant and its associated microbiome, indicating that PGPB can act as the driving force mediating long-lasting changes in both the plant metabolome and the plant microbiome.
Collapse
Affiliation(s)
- Pablo Carril
- Plant-Soil Ecology Laboratory, Center for Ecology, Evolution and Environmental Changes. Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
- Department of Biology, Università Degli Studi Di Firenze, Via Micheli 1, 50121, Florence, Italy.
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ephrem Ngendahimana
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Rogério Tenreiro
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Cristina Cruz
- Plant-Soil Ecology Laboratory, Center for Ecology, Evolution and Environmental Changes. Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Siachouli P, Karadima KS, Mavrantzas VG, Pandis SN. The effect of functional groups on the glass transition temperature of atmospheric organic compounds: a molecular dynamics study. SOFT MATTER 2024; 20:4783-4794. [PMID: 38847330 DOI: 10.1039/d4sm00405a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Organic compounds constitute a substantial part of atmospheric particulate matter not only in terms of mass concentration but also in terms of distinct functional groups. The glass transition temperature provides an indirect way to investigate the phase state of the organic compounds, playing a crucial role in understanding their behavior and influence on aerosol processes. Molecular dynamics (MD) simulations were implemented here to predict the glass transition temperature (Tg) of atmospherically relevant organic compounds as well as the influence of their functional groups and length of their carbon chain. The cooling step used in the simulations was chosen to be neither too low (to supress crystallization) nor too high (to avoid Tg overprediction). According to the MD simulations, the predicted Tg is sensitive to the functional groups as follows: carboxylic acid (-COOH) > hydroxyl (-OH) and (-COOH) > carbonyls (-CO). Increasing the number of carbon atoms leads to higher Tg for the linearly structured compounds. Linear compounds with lower molecular weight were found to exhibit a lower Tg. No clear correlation between O : C and Tg was observed. The architecture of the carbon chain (linear, or branched, or ring) was also found to impact the glass transition temperature. Compounds containing a non-aromatic carbon ring are characterized by a higher Tg compared to linear and branched ones with the same number of carbon atoms.
Collapse
Affiliation(s)
- Panagiota Siachouli
- Department of Chemical Engineering, University of Patras, Patras, GR 26504, Greece.
- Institute of Chemical Engineering Sciences (ICE-HT/FORTH), Patras, GR 26504, Greece
| | - Katerina S Karadima
- Department of Chemical Engineering, University of Patras, Patras, GR 26504, Greece.
- Institute of Chemical Engineering Sciences (ICE-HT/FORTH), Patras, GR 26504, Greece
| | - Vlasis G Mavrantzas
- Department of Chemical Engineering, University of Patras, Patras, GR 26504, Greece.
- Institute of Chemical Engineering Sciences (ICE-HT/FORTH), Patras, GR 26504, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Spyros N Pandis
- Department of Chemical Engineering, University of Patras, Patras, GR 26504, Greece.
- Institute of Chemical Engineering Sciences (ICE-HT/FORTH), Patras, GR 26504, Greece
| |
Collapse
|
4
|
Błaziak A, Schaefer T, Rudziński K, Herrmann H. Photo-Oxidation of α-Pinene Oxidation Products in Atmospheric Waters - pH- and Temperature-Dependent Kinetic Studies. J Phys Chem A 2024; 128:4507-4516. [PMID: 38780772 DOI: 10.1021/acs.jpca.4c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The atmospheric α-pinene oxidation leads to three carboxylic acids: norpinonic acid (NPA), pinic acid (PA), and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA). In this study, the OH radical kinetics in the aqueous phase of these carboxylic acids were investigated at different temperatures and pH values of solutions. Activation parameters and the corresponding atmospheric lifetimes of the acids in the troposphere were derived. The overall second-order rate constants for the individual speciation forms of the acids (AH and A- for NPA; AH2, AH- and A2- for PA; and AH3, AH2-, AH2- and A3- for MBTCA) were determined. At 298 K, the rate constants for reactions of protonated forms (AHx) of NPA, PA, and MBTCA with •OH, were (1.5 ± 0.2) × 109 L mol-1 s-1, (2.4 ± 0.1) × 109 L mol-1 s-1, and (4.1 ± 0.6) × 108 L mol-1 s-1, respectively. For the fully deprotonated forms (Ax-) of studied acids, the second-order rate constants were (2.2 ± 0.2) × 109 L mol-1 s-1, (2.8 ± 0.1) × 109 L mol-1 s-1, and (10.2 ± 0.7) × 108 L mol-1 s-1 at 298 K, respectively. It was found that the reactions of NPA and PA with OH radicals are faster than with MBTCA. For MBTCA, the reaction rate depends on pH more strongly at elevated temperatures (>298 K). The atmospheric lifetimes of the acids considered due to their reactivity with •OH were calculated for different model scenarios at a temperature of 283 K and pH = 2 in the aqueous phase. For this purpose, liquid water content (LWC) was used for aerosols and clouds under storm conditions and at various aqueous-phase concentrations of OH radicals. The lifetimes decreased with increasing LWC (from 10-12 m3 m-3 in aerosol to 10-5 m3 m-3 in storms), indicating that the acids undergo significant aqueous processing under realistic atmospheric conditions. Besides, the aerosol systems appeared less effective in removing PA and NPA, with lifetimes ranging from hundreds of days to tens and hundreds of hours, respectively. Clouds were more effective, with lifetimes ranging from tens of hours to a single second or less. MBTCA, which dissolves better in water, was effectively removed in all systems, with the longest lifetime of approximately 90 min.
Collapse
Affiliation(s)
- Agata Błaziak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Krzysztof Rudziński
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
5
|
Kołodziejczyk A, Wróblewska A, Pietrzak M, Pyrcz P, Błaziak K, Szmigielski R. Dissociation constants of relevant secondary organic aerosol components in the atmosphere. CHEMOSPHERE 2024; 351:141166. [PMID: 38224752 DOI: 10.1016/j.chemosphere.2024.141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The presented studies focus on measuring the determination of the acidity constant (pKa) of relevant secondary organic aerosol components. For our research, we selected important oxidation products (mainly carboxylic acids) of the most abundant terpene compounds, such as α-pinene, β-pinene, β-caryophyllene, and δ-3-carene. The research covered the synthesis and determination of the acidity constant of selected compounds. We used three methods to measure the acidity constant, i.e., 1H NMR titration, pH-metric titration, Bates-Schwarzenbach spectrophotometric method. Moreover, the pKa values were calculated with Marvin 21.17.0 software to compare the experimentally derived values with those calculated from the chemical structure. pKa values measured with 1H NMR titration ranged from 3.51 ± 0.01 for terebic acid to 5.18 ± 0.06 for β-norcaryophyllonic acid. Moreover, the data determined by the 1H NMR method revealed a good correlation with the data obtained with the commonly used potentiometric and UV-spectroscopic methods (R2 = 0.92). In contrast, the comparison with in silico results exhibits a relatively low correlation (R2Marvin = 0.66). We found that most of the values calculated with the Marvin Program are lower than experimental values obtained with pH-metric titration with an average difference of 0.44 pKa units. For di- and tricarboxylic acids, we obtained two and three pKa values, respectively. A good correlation with the literature values was observed, for example, Howell and Fisher (1958) used pH-metric titration and measured pKa1 and pKa2 to be 4.48 and 5.48, while our results are 4.24 ± 0.10 and 5.40 ± 0.02, respectively.
Collapse
Affiliation(s)
- Agata Kołodziejczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Aleksandra Wróblewska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Patryk Pyrcz
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Kacper Błaziak
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 01-224, Warsaw, Poland; Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 01-224, Warsaw, Poland
| | - Rafał Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
6
|
Witkowski B, al-Sharafi M, Błaziak K, Gierczak T. Aging of α-Pinene Secondary Organic Aerosol by Hydroxyl Radicals in the Aqueous Phase: Kinetics and Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6040-6051. [PMID: 37014140 PMCID: PMC10116591 DOI: 10.1021/acs.est.2c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The reaction of hydroxyl radicals (OH) with a water-soluble fraction of the α-pinene secondary organic aerosol (SOA) was investigated using liquid chromatography coupled with negative electrospray ionization mass spectrometry. The SOA was generated by the dark ozonolysis of α-pinene, extracted into the water, and subjected to chemical aging by the OH. Bimolecular reaction rate coefficients (kOH) for the oxidation of terpenoic acids by the OH were measured using the relative rate method. The unaged SOA was dominated by the cyclobutyl-ring-retaining compounds, primarily cis-pinonic, cis-pinic, and hydroxy-pinonic acids. Aqueous oxidation by the OH resulted in the removal of early-stage products and dimers, including well-known oligomers with MW = 358 and 368 Da. Furthermore, a 2- to 5-fold increase in the concentration of cyclobutyl-ring-opening products was observed, including terpenylic and diaterpenylic acids and diaterpenylic acid acetate as well as some of the newly identified OH aging markers. At the same time, results obtained from the kinetic box model showed a high degree of SOA fragmentation following the reaction with the OH, which indicates that non-radical reactions occurring during the evaporation of water likely contribute to the high yields of terpenoic aqSOAs reported previously. The estimated atmospheric lifetimes showed that in clouds, terpenoic acids react with the OH exclusively in the aqueous phase. Aqueous OH aging of the α-pinene SOA results in a 10% increase of the average O/C ratio and a 3-fold decrease in the average kOH value, which is likely to affect the cloud condensation nuclei activity of the aqSOA formed after the evaporation of water.
Collapse
|
7
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
8
|
Determination of Volatility Parameters of Secondary Organic Aerosol Components via Thermal Analysis. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To date, there are limited data on the thermal properties of secondary organic aerosol (SOA) components. In this study, we employed an experimental method to evaluate the physical properties of some atmospherically relevant compounds. We estimated the thermodynamic properties of SOA components, in particularly some carboxylic acids. The molar heat capacity, melting point and enthalpy, and vaporization enthalpy of the samples were determined via differential scanning calorimetry and thermogravimetric analysis, and their vaporization enthalpy (ΔHvap) was estimated using Clausius–Clapeyron and Langmuir equations based on their thermogravimetric profiles. The thermodynamic properties of benzoic acid as a reference compound agree well with the reported values. The obtained specific heat capacities of benzoic acid, phthalic acid, pinic acid, ketopinic acid, cis-pinonic acid, terpenylic acid and diaterpenylic acid acetate (DTAA) are 118.1, 169.4, 189.9, 223.9, 246.1, 223.2, and 524.1 J mol−1 K−1, respectively. The ΔHvap of benzoic acid, phthalic acid, ketopinic acid, DTAA, and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) are 93.2 ± 0.4, 131.6, 113.8, and 124.4 kJ mol−1, respectively. The melting and vaporization enthalpies of the SOA components range from 7.3 to 29.7 kJ mol−1.
Collapse
|
9
|
Stamm A, Öhlin J, Mosbech C, Olsén P, Guo B, Söderberg E, Biundo A, Fogelström L, Bhattacharyya S, Bornscheuer UT, Malmström E, Syrén PO. Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. JACS AU 2021; 1:1949-1960. [PMID: 34849510 PMCID: PMC8620555 DOI: 10.1021/jacsau.1c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Generation of renewable polymers is a long-standing goal toward reaching a more sustainable society, but building blocks in biomass can be incompatible with desired polymerization type, hampering the full implementation potential of biomaterials. Herein, we show how conceptually simple oxidative transformations can be used to unlock the inherent reactivity of terpene synthons in generating polyesters by two different mechanisms starting from the same α-pinene substrate. In the first pathway, α-pinene was oxidized into the bicyclic verbanone-based lactone and subsequently polymerized into star-shaped polymers via ring-opening polymerization, resulting in a biobased semicrystalline polyester with tunable glass transition and melting temperatures. In a second pathway, polyesters were synthesized via polycondensation, utilizing the diol 1-(1'-hydroxyethyl)-3-(2'-hydroxy-ethyl)-2,2-dimethylcyclobutane (HHDC) synthesized by oxidative cleavage of the double bond of α-pinene, together with unsaturated biobased diesters such as dimethyl maleate (DMM) and dimethyl itaconate (DMI). The resulting families of terpene-based polyesters were thereafter successfully cross-linked by either transetherification, utilizing the terminal hydroxyl groups of the synthesized verbanone-based materials, or by UV irradiation, utilizing the unsaturation provided by the DMM or DMI moieties within the HHDC-based copolymers. This work highlights the potential to apply an oxidative toolbox to valorize inert terpene metabolites enabling generation of biosourced polyesters and coatings thereof by complementary mechanisms.
Collapse
Affiliation(s)
- Arne Stamm
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Johannes Öhlin
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Caroline Mosbech
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Olsén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Boyang Guo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Elisabeth Söderberg
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Linda Fogelström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | | | - Uwe T. Bornscheuer
- Department
of Biotechnology and Enzyme Catalysis, University
of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Eva Malmström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| |
Collapse
|
10
|
Sarang K, Otto T, Rudzinski K, Schaefer T, Grgić I, Nestorowicz K, Herrmann H, Szmigielski R. Reaction Kinetics of Green Leaf Volatiles with Sulfate, Hydroxyl, and Nitrate Radicals in Tropospheric Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13666-13676. [PMID: 34583512 PMCID: PMC8529707 DOI: 10.1021/acs.est.1c03276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 05/28/2023]
Abstract
Green plants exposed to abiotic or biotic stress release C-5 and C-6 unsaturated oxygenated hydrocarbons called Green Leaf Volatiles (GLVs). GLVs partition into tropospheric waters and react to form secondary organic aerosol (SOA). We explored the kinetics of aqueous-phase reactions of 1-penten-3-ol (PENTOL), (Z)-2-hexen-1-ol (HEXOL), and (E)-2-hexen-1-al (HEXAL) with SO4•-, •OH, and NO3•. At 298 K, the rate constants for reactions of PENTOL, HEXOL, and HEXAL with SO4•- were, respectively, (9.4 ± 1.0) × 108 L mol-1 s-1, (2.5 ± 0.3) × 109 L mol-1 s-1, and (4.8 ± 0.2) × 108 L mol-1 s-1; with •OH - (6.3 ± 0.1) × 109 L mol-1 s-1, (6.7 ± 0.3) × 109 L mol-1 s-1, and (4.8 ± 0.3) × 109 L mol-1 s-1; and with NO3• - (1.5 ± 0.15) × 108 L mol-1 s-1, (8.4 ± 2.3) × 108 L mol-1 s-1, and (3.0 ± 0.7) × 107 L mol-1 s-1. The rate constants increased weakly with temperatures ranging from 278 to 318 K. The diffusional limitations of the rate constants appeared significant only for the GLV-•OH reactions. The aqueous-phase reactions appeared negligible in deliquescent aerosol and haze water but not in clouds and rains. The atmospheric lifetimes of GLVs decreased from many days to hours with increasing liquid water content and radicals' concentration.
Collapse
Affiliation(s)
- Kumar Sarang
- Environmental
Chemistry Group, Institute of Physical Chemistry
Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Tobias Otto
- Atmospheric
Chemistry Department, Leibniz Institute
for Tropospheric Research, 04318, Leipzig, Germany
| | - Krzysztof Rudzinski
- Environmental
Chemistry Group, Institute of Physical Chemistry
Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Thomas Schaefer
- Atmospheric
Chemistry Department, Leibniz Institute
for Tropospheric Research, 04318, Leipzig, Germany
| | - Irena Grgić
- Department
of Analytical Chemistry, National Institute
of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Klara Nestorowicz
- Environmental
Chemistry Group, Institute of Physical Chemistry
Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Hartmut Herrmann
- Atmospheric
Chemistry Department, Leibniz Institute
for Tropospheric Research, 04318, Leipzig, Germany
| | - Rafal Szmigielski
- Environmental
Chemistry Group, Institute of Physical Chemistry
Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
11
|
Khan F, Kwapiszewska K, Zhang Y, Chen Y, Lambe AT, Kołodziejczyk A, Jalal N, Rudzinski K, Martínez-Romero A, Fry RC, Surratt JD, Szmigielski R. Toxicological Responses of α-Pinene-Derived Secondary Organic Aerosol and Its Molecular Tracers in Human Lung Cell Lines. Chem Res Toxicol 2021; 34:817-832. [PMID: 33653028 PMCID: PMC7967287 DOI: 10.1021/acs.chemrestox.0c00409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Secondary organic aerosol (SOA) is a major component of airborne fine particulate matter (PM2.5) that contributes to adverse human health effects upon inhalation. Atmospheric ozonolysis of α-pinene, an abundantly emitted monoterpene from terrestrial vegetation, leads to significant global SOA formation; however, its impact on pulmonary pathophysiology remains uncertain. In this study, we quantified an increasing concentration response of three well-established α-pinene SOA tracers (pinic, pinonic, and 3-methyl-1,2,3-butanetricarboxylic acids) and a full mixture of α-pinene SOA in A549 (alveolar epithelial carcinoma) and BEAS-2B (bronchial epithelial normal) lung cell lines. The three aforementioned tracers contributed ∼57% of the α-pinene SOA mass under our experimental conditions. Cellular proliferation, cell viability, and oxidative stress were assessed as toxicological end points. The three α-pinene SOA molecular tracers had insignificant responses in both cell types when compared with the α-pinene SOA (up to 200 μg mL-1). BEAS-2B cells exposed to 200 μg mL-1 of α-pinene SOA decreased cellular proliferation to ∼70% and 44% at 24- and 48-h post exposure, respectively; no changes in A549 cells were observed. The inhibitory concentration-50 (IC50) in BEAS-2B cells was found to be 912 and 230 μg mL-1 at 24 and 48 h, respectively. An approximate 4-fold increase in cellular oxidative stress was observed in BEAS-2B cells when compared with untreated cells, suggesting that reactive oxygen species (ROS) buildup resulted in the downstream cytotoxicity following 24 h of exposure to α-pinene SOA. Organic hydroperoxides that were identified in the α-pinene SOA samples likely contributed to the ROS and cytotoxicity. This study identifies the potential components of α-pinene SOA that likely modulate the oxidative stress response within lung cells and highlights the need to carry out chronic exposure studies on α-pinene SOA to elucidate its long-term inhalation exposure effects.
Collapse
Affiliation(s)
- Faria Khan
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yue Zhang
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Aerodyne
Research Inc, Billerica, Masachusetts 01821, United States
| | - Yuzhi Chen
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Andrew T. Lambe
- Aerodyne
Research Inc, Billerica, Masachusetts 01821, United States
| | - Agata Kołodziejczyk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
- TROPOS,
Leibniz-Institut für Troposphärenforschung, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Nasir Jalal
- Department
of Interdisciplinary Science, Nanjing University
of Information Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Krzysztof Rudzinski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Alicia Martínez-Romero
- Cytomics
Core Facility, Príncipe Felipe Research
Center, Avenida Eduardo
Primo Yúfera, 3, Valenica 46012, Spain
| | - Rebecca C. Fry
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Rafal Szmigielski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Structural Characterisation of Dimeric Esters in α-Pinene Secondary Organic Aerosol Using N2 and CO2 Ion Mobility Mass Spectrometry. ATMOSPHERE 2020. [DOI: 10.3390/atmos12010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The atmospheric oxidation of monoterpenes leads to the formation of secondary organic aerosol (SOA). While numerous works have been carried out in the past to characterise SOA at a molecular level, the structural elucidation of SOA compounds remains challenging owing to the lack of authentic standard compounds. In this work, the structures of α-pinene originating dimeric esters in SOA with m/z 357 (C17H25O8-) and m/z 367 (C19H27O7-) were characterised using UPLC/ESI(-)IMS-TOFMS2 (ultra-performance liquid chromatography coupled to ion mobility spectrometry tandem time-of-flight mass spectrometry). The measured collision cross-section (ΩN2) values were compared to theoretically calculated ΩN2 values. Selected product ions of dimeric compounds and the authentic standard compounds of product ions were subjected to CO2-IMS-TOFMS for more detailed structural characterisation. Our results were consistent with previously reported subunits of the m/z 357 (terpenylic acid and cis-pinic acid), and the m/z 367 (10-hydroxy-cis-pinonic acid and cis-pinic acid) ions. The measured and calculated ΩN2 values of m/z 367 ions further support the conclusion of earlier structural characterisation; however, the structure of the m/z 357 ion remains vague and requires further characterisation studies with a synthesised reference compound.
Collapse
|
13
|
Kołodziejczyk A, Pyrcz P, Błaziak K, Pobudkowska A, Sarang K, Szmigielski R. Physicochemical Properties of Terebic Acid, MBTCA, Diaterpenylic Acid Acetate, and Pinanediol as Relevant α-Pinene Oxidation Products. ACS OMEGA 2020; 5:7919-7927. [PMID: 32309701 PMCID: PMC7160834 DOI: 10.1021/acsomega.9b04231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 05/14/2023]
Abstract
The physicochemical properties and the synthesis of four α-pinene oxidation products, terebic acid, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), diaterpenylic acid acetate (DTAA), and pinanediol, are presented in this study. The physicochemical properties encompass thermal properties, solubility in water, and dissociation constant (pK a) for the investigated compounds. It was found that terebic acid exhibits a relatively high melting temperature of 449.29 K, whereas pinanediol revealed a low melting temperature of 329.26 K. The solubility in water was determined with the dynamic method and the experimental results were correlated using three different mathematical models: Wilson, NRTL, and UNIQUAC equations. The results of the correlation indicate that the Wilson equation appears to work the best for terebic acid and pinanediol. The calculated standard deviation was for 3.79 for terebic acid and 1.25 for pinanediol. In contrast, UNIQUAC was the best mathematical model for DTAA and MBTCA. The calculated standard deviation was 0.57 for DTAA and 2.21 for MBTCA. The measured water solubility increased in the following order: pinanediol > DTAA ≥ MBTCA > terebic acid, which affects their multiphase aging chemistry in the atmosphere. Moreover, acidity constants (pK a) at 298, 303, and 308 K were determined for DTAA with the Bates-Schwarzenbach spectrophotometric method. The pK a values obtained at 298, 303, and 308 K were found to be 3.76, 3.85, and 3.88, respectively.
Collapse
Affiliation(s)
- Agata Kołodziejczyk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
- E-mail: . Phone: +48 22 343 34 02
| | - Patryk Pyrcz
- Institute
of Physical Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kacper Błaziak
- University
of Warsaw, Faculty of Chemistry, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Aneta Pobudkowska
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kumar Sarang
- Institute
of Physical Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
| | - Rafał Szmigielski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
- E-mail:
| |
Collapse
|