1
|
Rayamajhi S, Gibbs BK, Sipes J, Pathak HB, Bossmann SH, Godwin AK. Tracking Small Extracellular Vesicles Using a Minimally Invasive PicoGreen Labeling Strategy. ACS APPLIED BIO MATERIALS 2024; 7:7770-7783. [PMID: 39482871 DOI: 10.1021/acsabm.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted lipid bilayer delimited particles that mediate cellular communication. These tiny sacs of cellular information play an important role in cell communication and alter the physiological process under both normal and pathological conditions. As such, tracking EVs can provide valuable information regarding the basic understanding of cell communication, the onset of early malignancy, and biomarker discovery. Most of the current EV-tracking strategies are invasive, altering the natural characteristics of EVs by modifying the lipid bilayer with lipophilic dyes or surface proteins with fluorescent reporters. The invasive labeling strategies could alter the natural processes of EVs and thereby have major limitations for functional studies. Here, we report an alternative minimally invasive EV labeling strategy using PicoGreen (PG), a small molecule that fluoresces at 520 nm when bound to dsDNA. We show that PG binds to dsDNA associated with small EVs (50-200 nm), forming a stable and highly fluorescent PG-DNA complex in EVs (PG-EVs). In both 2D cell culture and 3D organoid models, PG-EV showed efficient tracking properties, including a high signal-to-noise ratio, time- and concentration-dependent uptake, and the ability to traverse a 3D environment. We further validated PG-EV tracking using dual-labeled EVs following two orthogonal labeling strategies: (1) Bioconjugation via surface amine labeling and (2) donor cell engineering via endogenously expressing mCherry-tetraspanin (CD9/CD63/CD81) reporter proteins. Our study has shown the feasibility of using PG-EV as an effective EV tracking strategy that can be applied for studying the functional role of EVs across multiple model systems.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Benjamin K Gibbs
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Jared Sipes
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Stefan H Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
2
|
Tian Y, Huang X, Li H, Chen Q, Gong X, Chen H, Fan M, Gong Z. Highly sensitive and selective off-on fluorescent platform for tricresyl phosphate flame retardant based on twisted intramolecular charge transfer probe. Anal Chim Acta 2024; 1285:342009. [PMID: 38057048 DOI: 10.1016/j.aca.2023.342009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Tricresyl phosphate (TCP), a typical organic phosphorus flame retardant (OPFR), is an emerging pollutant that causes great concern in recent years due to its high neurotoxicity and reproductive toxicity, etc. Conventional analysis methods for TCP such as gas chromatography and liquid chromatography-tandem mass spectrometry exhibit high sensitivity and accuracy. However, these techniques generally suffer from certain limitations, such as high cost, bulky equipment, time-consuming and operator-dependent properties. Therefore, the establishment of fast and efficient analytical methods for TCP still remains a great challenge. RESULT A "turn on" fluorescence sensing strategy for the efficient detection of TCP was established, based on a unique molecular rotor probe of 9-(2,2-dicyanovinyl)-julolidine (DCVJ). The introduction of TCP led to a significant enhancement of the fluorescence intensity of DCVJ. The results show that twisted intramolecular charge transfer (TICT) process might play an important role for this enhancement of fluorescence response via dynamic light scattering measurements and fluorescence lifetime analysis. Further investigations demonstrate that the hydrophobic interaction and conjugation effect between DCVJ and TCP constrain the molecular rotation and vibration of DCVJ, thereby regulating the TICT process, which contribute to this intriguing "turn on" behavior. In view of this, a new sensing platform with excellent performance for TCP was established, which offers quick response time, high selectivity, wide linear range (20-1200 ng mL-1, 1600-8000 ng mL-1), and low detection limit (4.82 ng mL-1). SIGNIFICANCE The established new sensing platform for TCP demonstrates the advantages of simplicity, high efficiency, excellent sensitivity and selectivity. The obtained results are also superior to some other previously reported fluorescence methods. This work opens up a new perspective for the efficient detection of emerging OPFRs pollutants.
Collapse
Affiliation(s)
- Yulu Tian
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xiaoying Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Hangzhou Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qiumeng Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinying Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Huan Chen
- Biogeochemistry & Environmental Quality Research Group, Clemson University, South Carolina 29442, United States
| | - Meikun Fan
- State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China.
| |
Collapse
|
3
|
Gross N, Kuhs CT, Ostovar B, Chiang WY, Wilson KS, Volek TS, Faitz ZM, Carlin CC, Dionne JA, Zanni MT, Gruebele M, Roberts ST, Link S, Landes CF. Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14557-14586. [PMID: 37554548 PMCID: PMC10406104 DOI: 10.1021/acs.jpcc.3c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Indexed: 08/10/2023]
Abstract
Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.
Collapse
Affiliation(s)
- Niklas Gross
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T. Kuhs
- Army
Research Laboratory-South, U.S. Army DEVCOM, Houston, Texas 77005, United States
| | - Behnaz Ostovar
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei-Yi Chiang
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Kelly S. Wilson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanner S. Volek
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary M. Faitz
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Claire C. Carlin
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sean T. Roberts
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Ultrafast Isomerization vs. Bond Twisting Process - Role of a Proton. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Sen A, Mora AK, Koli M, Mula S, Kundu S, Nath S. Sensing lysozyme fibrils by salicylaldimine substituted BODIPY dyes - A correlation with molecular structure. Int J Biol Macromol 2022; 220:901-909. [PMID: 35998856 DOI: 10.1016/j.ijbiomac.2022.08.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Quick and efficient detection of protein fibrils has enormous impact on the diagnosis and treatment of amyloid related neurological diseases. Among several methods, fluorescence based techniques have garnered most importance in the detection of amyloid fibrils due to its high sensitivity and extreme simplicity. Among other classes of molecular probes, BODIPY derivatives have been employed extensively for the detection of amyloid fibrils. However, there are very few studies on the relationship between the molecular structure of BODIPY dyes and their amyloid sensing activity. Here in a BODIPY based salicylaldimine Schiff base and its corresponding boron complex have been evaluated for their ability to sense amyloid fibrils from hen-egg white lysozyme using steady state and time-resolved spectroscopic techniques. Both dyes show fluorescence enhancement as well as increase in their excited state lifetime upon their binding with lysozyme fibrils. However, the BODIPY derivative which shows more emission enhancement in fibrillar solution has much lower affinity towards amyloid fibrils as compared to other derivative. This contrasting behaviour in the emission enhancement and binding affinity has been explained on the basis of differences in their photophysical properties in water and amyloid fibril originating from the difference in their molecular structure. Such correlation between the amyloid sensitivity and the molecular structure of the probe can open up a new strategy for designing new efficient amyloid probes.
Collapse
Affiliation(s)
- Ayentika Sen
- Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Soumitra Kundu
- Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
6
|
Kumar B, Mora AK, Ghosh R, Nath S. Natural DNA assisted white light generation and stimuli responsive colour tuning. Int J Biol Macromol 2021; 186:695-701. [PMID: 34271048 DOI: 10.1016/j.ijbiomac.2021.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
The unique structure of a natural nucleic acid, calf thymus DNA, which can provide an appropriate scaffold for an efficient cascaded energy transfer among organic chromophores, has been used for the generation of bright and pure white light on UV light excitation. Two most commonly used DNA stains, 4',6-diamidino-2-phenylindole (DAPI) and ethidium bromide (EB) have been used as a part of the donor-acceptor pairs. We have judiciously selected 10-anthracene-10-yl-3-methylbenzothiazol-3-ium chloride (AnMBTZ), an ultrafast molecular rotor, to act as a bridge between DNA bound DAPI and EB for the cascaded flow of energy. The unique molecular rotor properties of AnMBTZ and its exceptional binding ability with natural DNA help to form a distinct tri-chromophoric system in DNA template which can produce bright and pure white light on UV excitation. Detailed flow of energy from photoexcited DAPI to EB via AnMBTZ has been explored using steady state and time-resolved emission spectroscopy. Further, unique binding nature of AnMBTZ with DNA molecules has been used to modulate the colour of the emission from the present tri-chromophoric system by external stimuli, like salt and temperature. Such unique stimuli responsive multi-chromophoric system in a bio-template has great potential for different lightening applications.
Collapse
Affiliation(s)
- Bhupesh Kumar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Aruna K Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Meech S. Virtual Issue on Ultrafast Spectroscopy. J Phys Chem B 2021; 125:6037-6039. [PMID: 34134490 DOI: 10.1021/acs.jpcb.1c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steve Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, U.K
| |
Collapse
|
8
|
Manna B, Nandi A, Vats BG. Role of nanosize and defect trapping upon singlet fission yield and singlet fission dynamics of 1,6-Diphenyl-1,3,5-hexatriene nanoaggregates. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|