1
|
Luviano AS, Figueroa-Gerstenmaier S, Sarmiento-Gómez E, Rincón-Londoño N. “Non-disruptive Mixing of Cyclodextrins and Wormlike Micelles in the non-dilute regime”. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
The transition of rodlike micelles to wormlike micelles of an ionic liquid surfactant induced by different additives and the template-directed synthesis of calcium oxalate monohydrate to mimic the formation of urinary stones. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Tavera-Vázquez A, Rincón-Londoño N, López-Santiago RF, Castillo R. Measuring mesoscopic scales in complex fluids embedded with giant cylindrical micelles with diffusing wave spectroscopy micro-rheology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:034003. [PMID: 34598176 DOI: 10.1088/1361-648x/ac2c3e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
This review paper presents a procedure for measuring the mesoscopic scales in micellar solutions embedded with giant cylindrical micelles using the mean square displacement determined with a quasi-elastic multiple light scattering method (diffusing wave spectroscopy) and theory. The mesoscopic scales of interest are the micelles' total contour length, persistence and entanglement lengths, and the mesh size of the entangled micellar network. All of them depend on the physicochemical parameters of the solutions and determine the rheological behavior. We present an assessment of the whole procedure, the scattering experiments performance, the recovery of optical parameters, which includes dealing with the light absorption and its treatment, and how to develop the micro-rheology for obtaining the mesoscopic scales in these complex fluids.
Collapse
Affiliation(s)
- Antonio Tavera-Vázquez
- Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, 01000 Mexico City, México
| | - Natalia Rincón-Londoño
- Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, 01000 Mexico City, México
| | - Ricky F López-Santiago
- Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, 01000 Mexico City, México
| | - Rolando Castillo
- Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, 01000 Mexico City, México
| |
Collapse
|
4
|
Liu W, Ye Z, Chen Q, Huang X, Shang Y, Liu H, Meng H, He Y, Dong Y. Effect of the Substituent Position on the Phase Behavior and Photoresponsive Dynamic Behavior of Mixed Systems of a Gemini Surfactant and trans-Methoxy Sodium Cinnamates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9518-9531. [PMID: 34333982 DOI: 10.1021/acs.langmuir.1c01372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mixed systems of the Gemini cationic surfactant trimethylene-1,3-bis (dodecyldimethylammonium bromide) (12-3-12·2Br-) and the photosensitive additives trans-methoxy sodium cinnamates with different substituent positions (trans-ortho-methoxy cinnamate, trans-OMCA; trans-meta-methoxy cinnamate, trans-MMCA; and trans-para-methoxy cinnamate, trans-PMCA) were selected for investigating the effects of the substituting position of methoxy on the system phase diagram and UV light-responsive behavior of the wormlike micelles. The differences in phase behaviors of the selected systems were analyzed by calculating the potential distribution, molecular volume, and free energy of solvation of cinnamates and the binding energies between photosensitive additives and the surfactant. The photoresponsive behaviors of wormlike micelle solutions formed in the selected systems were studied by the rheological method and UV-vis and H nuclear magnetic resonance (1H NMR) spectroscopy; the kinetics of photoisomerization of trans-OMCA, trans-MMCA, and trans-PMCA were studied by first-order derivative spectrophotometry. The results reveal that the methoxy substituent position has a great influence on the phase behavior and photosensitivity of the studied systems. In addition, the photoisomerization of the studied cinnamates follows the first-order opposite reaction laws; the different reaction rates play the decisive role in the photosensitivity of the wormlike micelles. This paper would afford a deeper understanding of the UV light-responsive mechanism at the molecular level and provide essential guidance in preparing smart materials with adjustable light sensitivity.
Collapse
Affiliation(s)
- Wenxiu Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qizhou Chen
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangrong Huang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Meng
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yifan He
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Yinmao Dong
- Key Laboratory of Cosmetic, China National Light Industry, School of Science, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Rincón-Londoño N, Garza C, Esturau-Escofet N, Kozina A, Castillo R. Selective incorporation of one of the isomers of a photoswitchable molecule in wormlike micelles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Jora M, Sabadini E, Raghavan SR. Light-Triggered Rheological Changes in a System of Cationic Wormlike Micelles Formulated with a Photoacid Generator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13408-13414. [PMID: 33151692 PMCID: PMC7676294 DOI: 10.1021/acs.langmuir.0c01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
"Smart" fluids displaying large changes in their rheological properties in response to external stimuli have been of great interest in recent years. For example, "smart" wormlike micelles (WLMs) that respond to pH can be readily formulated by combining a cationic surfactant such as cetyltrimethylammonium bromide (CTAB) with an aromatic compound such as 1,2-dihydroxybenzene (DHB). Here, we show that a pH-responsive aqueous formulation as mentioned above can be simultaneously made responsive to ultraviolet (UV) light by incorporating a photoacid generator (PAG) into the system. A commercially available PAG, diphenyliodonium-2-carboxylate, is used here. Upon exposure to UV light, this PAG irreversibly photolyzes into iodobenzene (IB) and benzoic acid (BA), with the formation of BA, leading to a drop in pH. WLMs formed by mixtures of CTAB, DHB, and the PAG are systematically characterized before and after UV irradiation. As the PAG photolyzes, an increase in the viscosity of WLMs occurs by a factor of 1000. We show that the ratio of the zero-shear viscosity η0 (after UV/before UV) depends on the initial pH of the sample. The UV-induced increase in η0 can be attributed to the growth of WLMs in solution, which in turn is influenced by both the ionization state of DHB and the presence of IB and BA.
Collapse
Affiliation(s)
- Manazael
Zuliani Jora
- Physical
Chemistry Department, University of Campinas, Campinas, São Paulo 13084-862, Brazil
| | - Edvaldo Sabadini
- Physical
Chemistry Department, University of Campinas, Campinas, São Paulo 13084-862, Brazil
| | - Srinivasa R. Raghavan
- Department
of Chemical & Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742-2111, United States
| |
Collapse
|