Roos AH, Hoffmann JF, Binder WH, Hinderberger D. Nanoscale structure and dynamics of thermoresponsive single-chain nanoparticles investigated by EPR spectroscopy.
SOFT MATTER 2021;
17:7032-7037. [PMID:
34251013 DOI:
10.1039/d1sm00582k]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We characterize temperature-dependent macroscopic and nanoscopic phase transitions and nanoscopic pre-transitions of water-soluble single chain nanoparticles (SCNPs). The studied SCNPs are based on polymers displaying lower-critical solution temperature (LCST) behavior and show nanoscale compartmentation. SCNPs are amenable to continuous wave electron paramagnetic resonance (CW EPR) spectroscopy to study how amphiphilic, non-covalently added nitroxide spin probes or covalently attached spin labels sample their environment concerning nanoscale structures (polarity, hydrophilicity/-phobicity) and dynamics. These SCNPs are formed through single-chain collapse and have been shown to have nanosized compartments that are rigidified during the crosslinking process. We analyze the temperature-dependent phase transitions of spin-labeled SCNPs by rigorous spectral simulations of a series of multicomponent EPR-spectra that derive from the nanoinhomogeneities (1) that are due to the single-chain compartmentation in SCNPs and (2) the transformation upon temperature change due to the LCST behavior. These transitions of the SCNPs and their respective polymer precursors can be monitored and understood on the nanoscale by following EPR-spectroscopic parameters like hyperfine couplings that depend on the surrounding solvent molecules or Heisenberg spin exchange between small molecule spin probes or covalently attached spin labels in the nanocompartments. In particular, for one SCNP, we find an interesting behavior that we ascribe to the properties of the nanosized inner core with continuous effects before and jump-like changes after the macroscopic thermal collapse, indicating highly efficient desolvation and compaction upon an increase in temperature and aggregation of individual nanoparticles above the collapse temperature.
Collapse