1
|
Sheng Z, Jiang T, Li W, Shuai Z. TD-DMRG Study of Exciton Dynamics with both Thermal and Static Disorders for Fenna-Matthews-Olson Complex. J Chem Theory Comput 2024. [PMID: 39087905 DOI: 10.1021/acs.jctc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photosynthesis is a fundamental process that converts solar energy into chemical energy. Understanding the microscopic mechanisms of energy transfer in photosynthetic systems is crucial for the development of novel optoelectronic materials. Simulating these processes poses significant challenges due to the intricate interactions between electrons and phonons, compounded by static disorder. In this work, we present a numerically nearly exact study using the time-dependent density matrix renormalization group (TD-DMRG) method to simulate the quantum dynamics of the Fenna-Matthews-Olson (FMO) complex considering an eight-site model with both thermal and static disorders. We employ the thermo-field dynamics formalism for temperature effects. We merge all electronic interactions into one large matrix product state (MPS) site, boosting accuracy efficiently without increasing complexity. Previous combined experimental and computational studies indicated that the static disorders range from 30 to 90 cm-1 for different FMO sites. We employ a Gaussian distribution and the auxiliary bosonic operator approach to consider the static disorder in our TD-DMRG algorithm. We investigate the impact of different initial excitation sites, temperatures, and degrees of static disorder on the exciton dynamics and temporal coherence. It is found that under the influence of the experimentally determined static disorder strength, the exciton population evolution shows a non-negligible difference at zero temperature, while it is hardly affected at room temperature.
Collapse
Affiliation(s)
- Zirui Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| | - Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
2
|
Sokolov M, Hoffmann DS, Dohmen PM, Krämer M, Höfener S, Kleinekathöfer U, Elstner M. Non-adiabatic molecular dynamics simulations provide new insights into the exciton transfer in the Fenna-Matthews-Olson complex. Phys Chem Chem Phys 2024; 26:19469-19496. [PMID: 38979564 DOI: 10.1039/d4cp02116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A trajectory surface hopping approach, which uses machine learning to speed up the most time-consuming steps, has been adopted to investigate the exciton transfer in light-harvesting systems. The present neural networks achieve high accuracy in predicting both Coulomb couplings and excitation energies. The latter are predicted taking into account the environment of the pigments. Direct simulation of exciton dynamics through light-harvesting complexes on significant time scales is usually challenging due to the coupled motion of nuclear and electronic degrees of freedom in these rather large systems containing several relatively large pigments. In the present approach, however, we are able to evaluate a statistically significant number of non-adiabatic molecular dynamics trajectories with respect to exciton delocalization and exciton paths. The formalism is applied to the Fenna-Matthews-Olson complex of green sulfur bacteria, which transfers energy from the light-harvesting chlorosome to the reaction center with astonishing efficiency. The system has been studied experimentally and theoretically for decades. In total, we were able to simulate non-adiabatically more than 30 ns, sampling also the relevant space of parameters within their uncertainty. Our simulations show that the driving force supplied by the energy landscape resulting from electrostatic tuning is sufficient to funnel the energy towards site 3, from where it can be transferred to the reaction center. However, the high efficiency of transfer within a picosecond timescale can be attributed to the rather unusual properties of the BChl a molecules, resulting in very low inner and outer-sphere reorganization energies, not matched by any other organic molecule, e.g., used in organic electronics. A comparison with electron and exciton transfer in organic materials is particularly illuminating, suggesting a mechanism to explain the comparably high transfer efficiency.
Collapse
Affiliation(s)
- Monja Sokolov
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - David S Hoffmann
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Philipp M Dohmen
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Mila Krämer
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Sebastian Höfener
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | | | - Marcus Elstner
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
3
|
Ahad S, Lin C, Reppert M. PigmentHunter: A point-and-click application for automated chlorophyll-protein simulations. J Chem Phys 2024; 160:154111. [PMID: 38639311 DOI: 10.1063/5.0198443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Chlorophyll proteins (CPs) are the workhorses of biological photosynthesis, working together to absorb solar energy, transfer it to chemically active reaction centers, and control the charge-separation process that drives its storage as chemical energy. Yet predicting CP optical and electronic properties remains a serious challenge, driven by the computational difficulty of treating large, electronically coupled molecular pigments embedded in a dynamically structured protein environment. To address this challenge, we introduce here an analysis tool called PigmentHunter, which automates the process of preparing CP structures for molecular dynamics (MD), running short MD simulations on the nanoHUB.org science gateway, and then using electrostatic and steric analysis routines to predict optical absorption, fluorescence, and circular dichroism spectra within a Frenkel exciton model. Inter-pigment couplings are evaluated using point-dipole or transition-charge coupling models, while site energies can be estimated using both electrostatic and ring-deformation approaches. The package is built in a Jupyter Notebook environment, with a point-and-click interface that can be used either to manually prepare individual structures or to batch-process many structures at once. We illustrate PigmentHunter's capabilities with example simulations on spectral line shapes in the light harvesting 2 complex, site energies in the Fenna-Matthews-Olson protein, and ring deformation in photosystems I and II.
Collapse
Affiliation(s)
- S Ahad
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - C Lin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - M Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
4
|
Kim SS, Rhee YM. Potential energy interpolation with target-customized weighting coordinates: application to excited-state dynamics of photoactive yellow protein chromophore in water. Phys Chem Chem Phys 2024; 26:9021-9036. [PMID: 38440829 DOI: 10.1039/d3cp05643k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Interpolation of potential energy surfaces (PESs) can provide a practical route to performing molecular dynamics simulations with a reliability matching a high-level quantum chemical calculation. An obstacle to its widespread use is perhaps the lack of general and optimal interpolation settings that can be applied in a black-box manner for any given molecular system. How to set up the weights for interpolation is one such task, and we still need to diversify the approaches in order to treat various systems. Here, we develop a new interpolation weighting scheme, which allows us to choose the weighting coordinates in a system-specific manner, by amplifying the contribution from specific internal coordinates. The new weighting scheme with an appropriate selection of coordinates is proved to be effective in reducing the interpolation error along the reaction pathway. As a demonstration, we consider the photoactive yellow protein chromophore system, as it constitutes itself as an interesting target that bears long-standing questions related to excited-state dynamics inside protein environments. We build its two-state diabatic interpolated PES with the new weighting scheme. We indeed see the utility of our scheme by conducting nonadiabatic molecular dynamics simulations with the required semi-global PES based on a limited number of data points.
Collapse
Affiliation(s)
- Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
5
|
Ono J, Matsumura Y, Mori T, Saito S. Conformational Dynamics in Proteins: Entangled Slow Fluctuations and Nonequilibrium Reaction Events. J Phys Chem B 2024; 128:20-32. [PMID: 38133567 DOI: 10.1021/acs.jpcb.3c05307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Proteins exhibit conformational fluctuations and changes over various time scales, ranging from rapid picosecond-scale local atomic motions to slower microsecond-scale global conformational transformations. In the presence of these intricate fluctuations, chemical reactions occur and functions emerge. These conformational fluctuations of proteins are not merely stochastic random motions but possess distinct spatiotemporal characteristics. Moreover, chemical reactions do not always proceed along a single reaction coordinate in a quasi-equilibrium manner. Therefore, it is essential to understand spatiotemporal conformational fluctuations of proteins and the conformational change processes associated with reactions. In this Perspective, we shed light on the complex dynamics of proteins and their role in enzyme catalysis by presenting recent results regarding dynamic couplings and disorder in the conformational dynamics of proteins and rare but rapid enzymatic reaction events obtained from molecular dynamics simulations.
Collapse
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshihiro Matsumura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Shinji Saito
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
6
|
Kang DH, Cho KH, Kim J, Eun HJ, Rhee YM, Kim SK. Electron-Binding Dynamics of the Dipole-Bound State: Correlation Effect on the Autodetachment Dynamics. J Am Chem Soc 2023; 145:25824-25833. [PMID: 37972034 DOI: 10.1021/jacs.3c10099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The nature of the electron-binding forces in the dipole-bound states (DBS) of anions is interrogated through experimental and theoretical means by investigating the autodetachment dynamics from DBS Feshbach resonances of ortho-, meta-, and para-bromophenoxide (BrPhO-). Though the charge-dipole electrostatic potential has been widely regarded to be mainly responsible for the electron binding in DBS, the effect of nonclassical electron correlation has been conceived to be quite significant in terms of its static and/or dynamic contributions toward the binding of the excess electron to the neutral core. State-specific real-time autodetachment dynamics observed by picosecond time-resolved photoelectron velocity-map imaging spectroscopy reveal that the autodetachment processes from the DBS Feshbach resonances of BrPhO- anions cannot indeed be rationalized by the conventional charge-dipole potential. Specifically, the autodetachment lifetime is drastically lengthened depending on differently positioned Br-substitution, and this rate change cannot be explained within the framework of Fermi's golden rule based on the charge-dipole assumption. High-level ab initio quantum chemical calculations with EOM-EA-CCSD, which intrinsically takes into account electron correlations, generate more reasonable predictions on the binding energies than density functional theory (DFT) calculations, and semiclassical quantum dynamics simulations based on the EOM-EA-CCSD data excellently predict the trend in the autodetachment rates. These findings illustrate that static and dynamic properties of the excess electron in the DBS are strongly influenced by correlation interactions among electrons in the nonvalence orbital of the dipole-bound electron and highly polarizable valence orbitals of the bromine atom, which, in turn, dictate the interesting chemical fate of exotic anion species.
Collapse
Affiliation(s)
- Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Kwang Hyun Cho
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Jinwoo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Han Jun Eun
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Young Min Rhee
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Bose A, Walters PL. Impact of Spatial Inhomogeneity on Excitation Energy Transport in the Fenna-Matthews-Olson Complex. J Phys Chem B 2023; 127:7663-7673. [PMID: 37647510 DOI: 10.1021/acs.jpcb.3c03062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The dynamics of the excitation energy transfer (EET) in photosynthetic complexes is an interesting question both from the perspective of fundamental understanding and the research in artificial photosynthesis. Over the past decade, very accurate spectral densities have been developed to capture spatial inhomogeneities in the Fenna-Matthews-Olson (FMO) complex. However, challenges persist in numerically simulating these systems, both in terms of parameterizing them and following their dynamics over long periods of time because of long non-Markovian memories. We investigate the dynamics of FMO with the exact treatment of various theoretical spectral densities using the new tensor network path integral-based methods, which are uniquely capable of addressing the difficulty of long memory length and incoherent Förster theory. It is also important to be able to analyze the pathway of EET flow, which can be difficult to identify given the non-trivial structure of connections between bacteriochlorophyll molecules in FMO. We use the recently introduced ideas of relating coherence to population derivatives to analyze the transport process and reveal some new routes of transport. The combination of exact and approximate methods sheds light on the role of coherences in affecting the fine details of the transport and promises to be a powerful toolbox for future exploration of other open systems with quantum transport.
Collapse
Affiliation(s)
- Amartya Bose
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Peter L Walters
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Kim Y, Mitchell Z, Lawrence J, Morozov D, Savikhin S, Slipchenko LV. Predicting Mutation-Induced Changes in the Electronic Properties of Photosynthetic Proteins from First Principles: The Fenna-Matthews-Olson Complex Example. J Phys Chem Lett 2023; 14:7038-7044. [PMID: 37524046 DOI: 10.1021/acs.jpclett.3c01461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Multiscale molecular modeling is utilized to predict optical absorption and circular dichroism spectra of two single-point mutants of the Fenna-Matthews-Olson photosynthetic pigment-protein complex. The modeling approach combines classical molecular dynamics simulations with structural refinement of photosynthetic pigments and calculations of their excited states in a polarizable protein environment. The only experimental input to the modeling protocol is the X-ray structure of the wild-type protein. The first-principles modeling reproduces changes in the experimental optical spectra of the considered mutants, Y16F and Q198V. Interestingly, the Q198V mutation has a negligible effect on the electronic properties of the targeted bacteriochlorophyll a pigment. Instead, the electronic properties of several other pigments respond to this mutation. The molecular modeling demonstrates that a single-point mutation can induce long-range effects on the protein structure, while extensive structural changes near a pigment do not necessarily lead to significant changes in the electronic properties of that pigment.
Collapse
Affiliation(s)
- Yongbin Kim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Zach Mitchell
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Jack Lawrence
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Tonami T, Miyamoto H, Nakano M, Kishi R, Kitagawa Y. Theoretical Study on Thermal Structural Fluctuation Effects of Intermolecular Configurations on Singlet Fission in Pentacene Crystal Models. J Phys Chem A 2023; 127:1883-1893. [PMID: 36799732 DOI: 10.1021/acs.jpca.2c08864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Singlet fission (SF) occurs as a result of complex excited state relaxation dynamics in molecular aggregates, where a singlet exciton (FE) state is converted into a double-triplet exciton (TT) state through the interactions with several other degrees of freedom, such as nuclear motions. In this study, we combined quantum dynamics simulation based on the quantum master equation approach with all-atom-based classical molecular mechanics/molecular dynamics to examine the thermal structural fluctuation (i.e., static disorder) effects of intermolecular configuration on SF in pentacene crystal models. In particular, we considered two types of static-disordered models, in which excited states are assumed to interact with nuclear motions of intermolecular modes in the classical mechanical/statistical manner. We found that the introduction of static disorder effects leads to a faster decay of coherence between the FE and charge transfer (CT) states in the early stage of SF, contributing to the accelerations of several FE → TT relaxation pathways. Such acceleration in these models is shown to be attributed to fluctuations in the energies and electronic coupling of the CT states based on relative relaxation factor analysis. The present study is expected to contribute to further development of bottom-up materials design for efficient SF in condensed phases where the exitonic system interacts with nuclear motions in various coupling strengths.
Collapse
Affiliation(s)
- Takayoshi Tonami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hajime Miyamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry (RCSEC), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (SRN-OTRI), Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
10
|
Hu Z, Liu Z, Sun X. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex. J Phys Chem B 2022; 126:9271-9287. [PMID: 36327977 DOI: 10.1021/acs.jpcb.2c06605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Fenna-Matthews-Olson (FMO) complex of green sulfur bacteria has been serving as a prototypical light-harvesting protein for studying excitation energy transfer (EET) dynamics in photosynthesis. The most widely used Frenkel exciton model for FMO complex assumes that each excited bacteriochlorophyll site couples to an identical and isolated harmonic bath, which does not account for the heterogeneous local protein environment. To better describe the realistic environment, we propose to use the recently developed multistate harmonic (MSH) model, which contains a globally shared bath that couples to the different pigment sites according to the atomistic quantum mechanics/molecular mechanics simulations with explicit protein scaffold and solvent. In this work, the effects of heterogeneous protein environment on EET in FMO complexes from Prosthecochloris aestuarii and Chlorobium tepidum, specifically including realistic spectral density, site-dependent reorganization energies, and system-bath couplings are investigated. Semiclassical and mixed quantum-classical mapping dynamics were applied to obtain the nonadiabatic EET dynamics in several models ranging from the Frenkel exciton model to the MSH model and their variants. The MSH model with realistic spectral density and site-dependent system-bath couplings displays slower EET dynamics than the Frenkel exciton model. Our comparative study shows that larger average reorganization energy, heterogeneity in spectral densities, and low-frequency modes could facilitate energy dissipation, which is insensitive to the static disorder in reorganization energies. The effects of the spectral densities and system-bath couplings along with the MSH model can be used to optimize EET dynamics for artificial light-harvesting systems.
Collapse
Affiliation(s)
- Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
11
|
ZHU ZHE, Higashi M, Saito S. Excited states of chlorophyll a and b in solution by time-dependent density functional theory. J Chem Phys 2022; 156:124111. [DOI: 10.1063/5.0083395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ground state and excited state electronic properties of chlorophyll (Chl) a and Chl b in diethyl ether, acetone, and ethanol solutions are investigated using quantum mechanical and molecular mechanical calculations with density functional theory (DFT) and time-dependent DFT (TDDFT). Although the DFT/TDDFT methods are widely used, the electronic structures of molecules, especially large molecules, calculated with these methods are known to be strongly dependent on the functionals and the parameters used in functionals. Here, we optimize the range-separated parameter, µ, of the CAM-B3LYP functional of Chl a and Chl b to reproduce the experimental excitation energy differences of these Chl molecules in solution. The optimal values of µ for Chl a and Chl b are smaller than the default value of µ and that for bacteriochlorophyll a, indicating the change in electronic distribution, i.e., an increase in electron delocalization, within the molecule. We find that the electronic distribution of Chl b with an extra formyl group is different from that of Chl a. We also find that the polarity of solution and hydrogen bond cause the decrease in the excitation energies and the increase in the widths of excitation energy distributions of Chl a and Chl b. The present results are expected to be useful for understanding the electronic properties of each pigment molecule in a local heterogeneous environment, which will play an important role in the excitation energy transfer in light-harvesting complex II.
Collapse
Affiliation(s)
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University - Katsura Campus, Japan
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Japan
| |
Collapse
|
12
|
Cho KH, Rhee YM. Computational elucidations on the role of vibrations in energy transfer processes of photosynthetic complexes. Phys Chem Chem Phys 2021; 23:26623-26639. [PMID: 34842245 DOI: 10.1039/d1cp04615b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coupling between pigment excitations and nuclear movements in photosynthetic complexes is known to modulate the excitation energy transfer (EET) efficiencies. Toward providing microscopic information, researchers often apply simulation techniques and investigate how vibrations are involved in EET processes. Here, reports on such roles of nuclear movements are discussed from a theory perspective. While vibrations naturally present random thermal fluctuations that can affect energy transferring characteristics, they can also be intertwined with exciton structures and create more specific non-adiabatic energy transfer pathways. For reliable simulations, a bath model that accurately mimics a given molecular system is required. Methods for obtaining such a model in combination with quantum chemical electronic structure calculations and molecular dynamics trajectory simulations are discussed. Various quantum dynamics simulation tools that can handle pigment-to-pigment energy transfers together with their vibrational characters are also touched on. Behaviors of molecular vibrations often deviate from ideality, especially when all-atom details are included, which practically forces us to treat them classically. We conclude this perspective by considering some recent reports that suggest that classical descriptions of bath effects with all-atom details may still produce valuable information for analyzing sophisticated contributions by vibrations to EET processes.
Collapse
Affiliation(s)
- Kwang Hyun Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
13
|
Cui X, Yan Y, Wei J. Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex. J Phys Chem B 2021; 125:11884-11892. [PMID: 34669415 DOI: 10.1021/acs.jpcb.1c06844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of pigment-protein coupling in the dynamics of photosynthetic energy transport in chromophoric complexes has not been fully understood. The excitation energy transfer in the photosynthetic system is tremendously efficient. In particular, we investigate the excitation energy transport in the Fenna-Matthews-Olson (FMO) complex. The exciton dynamics and excitation energy transfer (EET) depend on the interaction between the excited chromophores and their environment. Most theoretical models believe that all bacteriochlorophyll-a (BChla) sites are surrounded by the same local protein environment, which is contradicted by the structural analysis of the FMO complex. Based on different values of pigment-protein coupling for different sites, measured in the adiabatic limit, we have theoretically investigated the effect of the heterogeneous local protein environment on the EET process. By the realistic and site-dependent model of the system-bath couplings, the results show that this interaction may have a critical value for the coherent energy-transfer process. Furthermore, we verify that the two transport pathways are coherent and stable to the important parameter reorganization energy of environmental interactions. The quantum dynamical simulations show that the correlation fluctuation keeps the oscillation of the coherent excitation on a long timescale. In addition, due to the inhomogeneous pigment-protein coupling, different BChl sites have asymmetric excitation oscillation timescales.
Collapse
Affiliation(s)
- XueYan Cui
- Department of Physics & Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
| | - YiJing Yan
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - JianHua Wei
- Department of Physics & Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
| |
Collapse
|
14
|
Fujimoto KJ, Minoda T, Yanai T. Spectral Tuning Mechanism of Photosynthetic Light-Harvesting Complex II Revealed by Ab Initio Dimer Exciton Model. J Phys Chem B 2021; 125:10459-10470. [PMID: 34521196 DOI: 10.1021/acs.jpcb.1c04457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excited states of two kinds of bacteriochlorophyll (BChl) aggregates, B850 and B800, in photosynthetic light-harvesting complex II (LH2) are theoretically investigated by developing and using an extended exciton model considering efficiently evaluated excitonic coupling. Our exciton model based on dimer fragmentation is shown to reproduce the experimental absorption spectrum of LH2 with good accuracy, entailing their different redshifts originating from aggregations of B850 and B800. The systematic analysis has been performed on the spectra by quantitatively decomposing their spectral shift energies into the contributions of various effects: structural distortion, electrostatic, excitonic coupling, and charge-transfer (CT) effects. Our results show that the spectral redshift of B800 is mainly attributed to its electrostatic interaction with the protein environment, while that of B850 arises from the marked effect of the excitonic coupling between BChl units. The interchromophore CT excitation also plays a key role in the spectral redshift of B850. This CT effect can be effectively described using our dimer model. This suited characterization reveals that the pronounced CT effect originates from the characteristics of B850 that has closely spaced BChls as dimers. We highlight the importance of the refinement of the crystal structure with the use of quantum chemical methods for prediction of the spectrum.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Takumi Minoda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
15
|
Yoshida T, Watanabe K. Spectral Diffusion of Excitons in 3,4,9,10-Perylenetetracarboxylic-diimide (PTCDI) Thin Films. J Phys Chem B 2021; 125:9350-9356. [PMID: 34375107 DOI: 10.1021/acs.jpcb.1c02589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we study spectral diffusion of molecular excitons in thin films of 3,4,9,10-perylenetetracarboxylic-diimide by using two-dimensional electronic spectroscopy (2DES). Temperature dependence of the spectral diffusion is studied from 105 to 471 K by analyzing the center line slope (CLS) of the ground-state bleach in the 2DES signal. A significant acceleration of the decay of the CLS with increasing the temperature is observed, which cannot be explained by a linear system-bath coupling model with a harmonic bath. We propose an anharmonic coupling model as the underlying mechanism, in which the exciton energy gap fluctuations by a high-frequency intramolecular vibration are enhanced by coupling with a low-frequency phonon mode.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuya Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Kimura A, Kitoh-Nishioka H, Shigeta Y, Itoh S. Comparison between the Light-Harvesting Mechanisms of Type-I Photosynthetic Reaction Centers of Heliobacteria and Photosystem I: Pigment Site Energy Distribution and Exciton State. J Phys Chem B 2021; 125:3727-3738. [DOI: 10.1021/acs.jpcb.0c09400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hirotaka Kitoh-Nishioka
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
17
|
Ishizaki A, Fleming GR. Insights into Photosynthetic Energy Transfer Gained from Free-Energy Structure: Coherent Transport, Incoherent Hopping, and Vibrational Assistance Revisited. J Phys Chem B 2021; 125:3286-3295. [PMID: 33724833 DOI: 10.1021/acs.jpcb.0c09847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Giant strides in ultrashort laser pulse technology have enabled real-time observation of dynamical processes in complex molecular systems. Specifically, the discovery of oscillatory transients in the two-dimensional electronic spectra of photosynthetic systems stimulated a number of theoretical investigations exploring the possible physical mechanisms of the remarkable quantum efficiency of light harvesting processes. In this work, we revisit the elementary aspects of environment-induced fluctuations in the involved electronic energies and present a simple way to understand energy flow with the intuitive picture of relaxation in a funnel-type free-energy landscape. The presented free-energy description of energy transfer reveals that typical photosynthetic systems operate in an almost barrierless regime. The approach also provides insights into the distinction between coherent and incoherent energy transfer and the criteria by which the necessity of the vibrational assistance is considered.
Collapse
Affiliation(s)
- Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan.,School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Reinot T, Khmelnitskiy A, Kell A, Jassas M, Jankowiak R. Exciton Lifetime Distributions and Population Dynamics in the FMO Protein Complex from Prosthecochloris aestuarii. ACS OMEGA 2021; 6:5990-6008. [PMID: 33681637 PMCID: PMC7931385 DOI: 10.1021/acsomega.1c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Significant protein rearrangement upon excitation and energy transfer in Fenna-Matthews-Olson protein of Prosthecochloris aestuarii results in a modified energy landscape, which induces more changes in pigment site energies than predicted by the "standard" hole-burning theory. The energy changes are elucidated by simulations while investigating the effects of site-dependent disorder, both static (site-energy distribution widths) and dynamic (spectral density shapes). The resulting optimized site energies and their fluctuations are consistent with relative differences observed in inhomogeneous widths calculated by recent molecular dynamic simulations. Two sets of different spectral densities reveal how their shapes affect the population dynamics and distribution of exciton lifetimes. Calculations revealed the wavelength-dependent distributions of exciton lifetimes (T 1) in the femtosecond to picosecond time frame. We suggest that the calculated multimodal and asymmetric wavelength-dependent T 1 distributions offer more insight into the interpretation of resonant hole-burned (HB) spectra, kinetic traces in two-dimensional (2D) electronic spectroscopy experiments, and widely used global analyses in fitting data from transient absorption experiments.
Collapse
Affiliation(s)
- Tonu Reinot
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anton Khmelnitskiy
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Adam Kell
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mahboobe Jassas
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ryszard Jankowiak
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
19
|
Tanimura Y. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J Chem Phys 2021; 153:020901. [PMID: 32668942 DOI: 10.1063/5.0011599] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An open quantum system refers to a system that is further coupled to a bath system consisting of surrounding radiation fields, atoms, molecules, or proteins. The bath system is typically modeled by an infinite number of harmonic oscillators. This system-bath model can describe the time-irreversible dynamics through which the system evolves toward a thermal equilibrium state at finite temperature. In nuclear magnetic resonance and atomic spectroscopy, dynamics can be studied easily by using simple quantum master equations under the assumption that the system-bath interaction is weak (perturbative approximation) and the bath fluctuations are very fast (Markovian approximation). However, such approximations cannot be applied in chemical physics and biochemical physics problems, where environmental materials are complex and strongly coupled with environments. The hierarchical equations of motion (HEOM) can describe the numerically "exact" dynamics of a reduced system under nonperturbative and non-Markovian system-bath interactions, which has been verified on the basis of exact analytical solutions (non-Markovian tests) with any desired numerical accuracy. The HEOM theory has been used to treat systems of practical interest, in particular, to account for various linear and nonlinear spectra in molecular and solid state materials, to evaluate charge and exciton transfer rates in biological systems, to simulate resonant tunneling and quantum ratchet processes in nanodevices, and to explore quantum entanglement states in quantum information theories. This article presents an overview of the HEOM theory, focusing on its theoretical background and applications, to help further the development of the study of open quantum dynamics.
Collapse
Affiliation(s)
- Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
Chaillet M, Lengauer F, Adolphs J, Müh F, Fokas AS, Cole DJ, Chin AW, Renger T. Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment. J Phys Chem Lett 2020; 11:10306-10314. [PMID: 33227205 PMCID: PMC7751012 DOI: 10.1021/acs.jpclett.0c03123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Inhomogeneous broadening of optical lines of the Fenna-Matthews-Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy. When summing over the large number of contributions, the resulting distribution functions of the site energies become Gaussians, and the correlations in site energy fluctuations at different sites practically average to zero. These results demonstrate that static disorder in the FMO protein is in the realm of the central limit theorem of statistics.
Collapse
Affiliation(s)
- Marten
L. Chaillet
- Bijvoet
Centre for Biomolecular Research, University
of Utrecht, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Florian Lengauer
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Julian Adolphs
- Leibniz
Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Frank Müh
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Alexander S. Fokas
- TCM
Group, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Daniel J. Cole
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United
Kingdom
| | - Alex W. Chin
- Centre
National de la Recherce Scientifique, Institute des Nanosciences de
Paris, Sorbonne Université, Paris, France
| | - Thomas Renger
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
21
|
Klinger A, Lindorfer D, Müh F, Renger T. Normal mode analysis of spectral density of FMO trimers: Intra- and intermonomer energy transfer. J Chem Phys 2020; 153:215103. [PMID: 33291900 DOI: 10.1063/5.0027994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intermolecular contribution to the spectral density of the exciton-vibrational coupling of the homotrimeric Fenna-Matthews-Olson (FMO) light-harvesting protein of green sulfur bacteria P. aestuarii is analyzed by combining a normal mode analysis of the protein with the charge density coupling method for the calculation of local transition energies of the pigments. Correlations in site energy fluctuations across the whole FMO trimer are found at low vibrational frequencies. Including, additionally, the high-frequency intrapigment part of the spectral density, extracted from line-narrowing spectra, we study intra- and intermonomer exciton transfer. Whereas the intrapigment part of the spectral density is important for fast intramonomer exciton relaxation, the intermolecular contributions (due to pigment-environment coupling) determine the intermonomer exciton transfer. Neither the variations of the local Huang-Rhys factors nor the correlations in site energy fluctuations have a critical influence on energy transfer. At room temperature, the intermonomer transfer in the FMO protein occurs on a 10 ps time scale, whereas intramonomer exciton equilibration is roughly two orders of magnitude faster. At cryogenic temperatures, intermonomer transfer limits the lifetimes of the lowest exciton band. The lifetimes are found to increase between 20 ps in the center of this band up to 100 ps toward lower energies, which is in very good agreement with the estimates from hole burning data. Interestingly, exciton delocalization in the FMO monomers is found to slow down intermonomer energy transfer, at both physiological and cryogenic temperatures.
Collapse
Affiliation(s)
- Alexander Klinger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Dominik Lindorfer
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
22
|
Suzuki Y, Watanabe H, Okiyama Y, Ebina K, Tanaka S. Comparative study on model parameter evaluations for the energy transfer dynamics in Fenna–Matthews–Olson complex. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bhattacharyya P, Fleming GR. The role of resonant nuclear modes in vibrationally assisted energy transport: The LHCII complex. J Chem Phys 2020; 153:044119. [DOI: 10.1063/5.0012420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Pallavi Bhattacharyya
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
- Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Yoshida T, Watanabe K, Petrović M, Kralj M. Anomalous Temperature Dependence of Exciton Spectral Diffusion in Tetracene Thin Film. J Phys Chem Lett 2020; 11:5248-5254. [PMID: 32551650 DOI: 10.1021/acs.jpclett.0c01537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, an ultrafast spectral diffusion of the lowest exciton in a tetracene ultrathin film is studied by two-dimensional electronic spectroscopy. From the analysis of the nodal line slope, the frequency-fluctuation correlation function (FFCF) of the exciton band is extracted. The FFCF contains two components with decay times of 400 and 80 fs; while the former can be understood by a linear exciton-phonon coupling model, the latter shows an order of magnitude increase in its amplitude from 96 to 186 K that cannot be explained by the same model. A novel scheme of the energy-gap fluctuations is examined, in which an intramolecular high-frequency mode causes the spectral diffusion that is enhanced through an anharmonic coupling to low-frequency phonon modes. This finding provides a valuable input for future theoretical predictions on the ultrafast nonadiabatic dynamics of the molecular exciton.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuya Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Marin Petrović
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenic̆ka 46, 10000 Zagreb, Croatia
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenic̆ka 46, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Dutta R, Bagchi B. Quantum Coherence and Its Signatures in Extended Quantum Systems. J Phys Chem B 2020; 124:4551-4563. [DOI: 10.1021/acs.jpcb.0c02190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rajesh Dutta
- SSCU, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- SSCU, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Kim Y, Morozov D, Stadnytskyi V, Savikhin S, Slipchenko LV. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex. J Phys Chem Lett 2020; 11:1636-1643. [PMID: 32013435 DOI: 10.1021/acs.jpclett.9b03486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High efficiency of light harvesting in photosynthetic pigment-protein complexes is governed by evolutionary-perfected protein-assisted tuning of individual pigment properties and interpigment interactions. Due to the large number of spectrally overlapping pigments in a typical photosynthetic complex, experimental methods often fail to unambiguously identify individual chromophore properties. Here, we report a first-principles-based modeling protocol capable of predicting properties of pigments in protein environment to a high precision. The technique was applied to successfully uncover electronic properties of the Fenna-Matthews-Olson (FMO) pigment-protein complex. Each of the three subunits of the FMO complex contains eight strongly coupled bacteriochlorophyll a (BChl a) pigments. The excitonic structure of FMO can be described by an electronic Hamiltonian containing excitation (site) energies of BChl a pigments and electronic couplings between them. Several such Hamiltonians have been developed in the past based on the information from various spectroscopic measurements of FMO; however, fine details of the excitonic structure and energy transfer in FMO, especially assignments of short-lived high-energy sites, remain elusive. Utilizing polarizable embedding quantum mechanics/molecular mechanics with the effective fragment potentials, we computed the electronic Hamiltonian of FMO that is in general agreement with previously reported empirical Hamiltonians and quantitatively reproduces experimental absorption and circular dichroism spectra of the FMO protein. The developed computational protocol is sufficiently simple and can be utilized for predictive modeling of other wild-type and mutated photosynthetic pigment-protein complexes.
Collapse
Affiliation(s)
- Yongbin Kim
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland
| | - Valentyn Stadnytskyi
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestion and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, United States
| | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|