1
|
Ren M, Qin F, Liu Y, Liu D, Lopes RP, Astruc D, Liang L. Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores. Talanta 2025; 286:127544. [PMID: 39805202 DOI: 10.1016/j.talanta.2025.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions. The nanopore translocation properties reveal that the dispersion and transporting of PEI is pH-dependent, and its capture rate is much lower than that of PAA. The neutral block copolymer with longest molecular chain threads through with longest blockage duration, its highest capture rate was achieved in 0.5 M KCl at pH 5 with slow diffusion and high temporal resolution. The two generations of neutral dendrimers could also translocate under bias potentials, probably due to the ions adsorption on the dendrimers and driven by Brownian force. The TEG-81 with larger molecular size translocates with longer residence time and higher blockage ratio, as expected. Both of the dendrimers exhibit a higher blockage ratio at pH 7.4 than either acidic or alkalic condition, indicating a larger stretched conformation adopted under neutral condition. This work presents the analysis of unimolecular charged and neutral polymers and dendrimers, which will be insightful in understanding the self-assembly motion and transfer of synthetic macromolecules in confined space. It also provides a good indication for deciphering the macromolecule-nanopore interplay under electrophoretic condition.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Jiaotong University, Chongqing, 400014, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Yue Liu
- Chongqing Mental Health Center, Chongqing, 400020, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | | | - Didier Astruc
- ISM, UMR CNRS N° 5255, University of Bordeaux, Talence Cedex, 33405, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| |
Collapse
|
2
|
Shi Q, Wu J, Chen H, Xu X, Yang YB, Ding M. Inertial migration of polymer micelles in a square microchannel. SOFT MATTER 2024; 20:1760-1766. [PMID: 38295375 DOI: 10.1039/d3sm01304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Using a hybrid simulation approach that combines a lattice-Boltzmann method for fluid flow and a molecular dynamics model for polymers, we investigate the inertial migration of star-like and crew-cut polymer micelles in a square microchannel. It is found that they exhibit two types of equilibrium positions, which shift further away from the center of the microchannel when the Reynolds number (Re) increases, as can be observed for soft particles. What differs from the behaviors of soft particles is that here, the blockage ratio is no longer the decisive factor. When the sizes are the same, the star-like micelles are always relatively closer to the microchannel wall as they gradually transition from spherical to disc-like with the increase of Re. In comparison, the crew-cut micelles are only transformed into an ellipsoid. Conversely, when the hydrophobic core sizes are the same, the equilibrium position of the star-like micelles becomes closer to that of the crew-cut micelles. Our results demonstrate that for polymer micelles with a core-shell structure, the equilibrium position is no longer solely determined by their overall dimensions but depends on the core and shell's specific dimensions, especially the hydrophobic core size. This finding opens up a new approach for achieving the separation of micelles in inertial migration.
Collapse
Affiliation(s)
- Qingfeng Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jintang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Haisong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaolong Xu
- School of Environmental and Chemical Engineering, Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Yong-Biao Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
3
|
He Y, Li L, Ding M, Li W. Flow-driven translocation of comb-like copolymer micelles through a nanochannel. SOFT MATTER 2023; 19:9166-9172. [PMID: 37990911 DOI: 10.1039/d3sm01241g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Using hybrid lattice-Boltzmann molecular dynamics simulations, we investigate the flow-driven translocation of comb-like copolymer micelles through a nanochannel, in particular, making a detailed comparison with micelles formed by the corresponding diblock copolymers. Our results demonstrate that the critical flow flux of micelles formed by the comb-like copolymers is higher than that of micelles formed by the corresponding diblock copolymers, which is more pronounced with increasing side chain lengths or grafting densities, as evidenced by the free energy computed by self-consistent field theory. Our work indicates that the impact of chain topology on the stability of micelles, especially with the same size, can be well characterized using the critical flow fluxes, which provides a theoretical basis for designing self-assembling micelles for various applications.
Collapse
Affiliation(s)
- Yingjie He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Hao P, Mai XH, Chen QY, Ding MM. Conformation of an Amphiphilic Comb-like Copolymer in a Selective Solvent. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Ding M, Li L. Flow-Induced Translocation and Conformational Transition of Polymer Chains through Nanochannels: Recent Advances and Future Perspectives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Driven Transport of Dilute Polymer Solutions through Porous Media Comprising Interconnected Cavities. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Driven transport of dilute polymer solutions through porous media has been simulated using a recently proposed novel dissipative particle dynamics method satisfying the no-penetration and no-slip boundary conditions. The porous media is an array of overlapping spherical cavities arranged in a simple cubic lattice. Simulations were performed for linear, ring, and star polymers with 12 arms for two cases with the external force acting on (I) both polymer and solvent beads to model a pressure-driven flow; (II) polymer beads only, similar to electrophoresis. When the external force is in the direction of a principal axis, the extent of change in the polymers’ conformation and their alignment with the driving force is more significant for case I. These effects are most pronounced for linear chains, followed by rings and stars at the same molecular weight. Moreover, the polymer mean velocity is affected by its molecular weight and architecture as well as the direction and strength of the imposed force.
Collapse
|