1
|
Ding X, Shan J, Yang S, Liu J, Jiang C, Yu S, Wu Q. Effect of CNF ratio and pressure on structural and electrochemical performance of hybrid hydrogel for flexible free-standing electrode and sensors. Carbohydr Polym 2025; 349:122955. [PMID: 39643417 DOI: 10.1016/j.carbpol.2024.122955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024]
Abstract
A 2D flexible hydrogel (GO/CNFn) with layered structure and superhydrophilic is synthesized via cross-linking and self-assembling of graphene oxide (GO) with cellulose nanofiber (CNF) through microwave-assisted hydrothermal. CNF acts as "dispersant" and "spacer", making GO nanosheets uniformly disperse on their surface with less agglomerations. The carboxyl groups and hydrophilicity of CNF effectively improve the charge storage capacity of carbon materials through interactions. When the mass ratio of GO to CNF is 3:1, the GO/CNF1 exhibits an excellent comprehensive electrochemical performance as free-standing electrodes, with the specific capacitance reaching 295 F/g at 0.5 A/g in three-electrode system. The influence of press pressure on GO/CNFn reveals that increasing the pressure improves the hydrophilicity of the electrode, favoring their wettability to aqueous electrolyte. GO/CNF1-6 possesses the highest degree of graphitization, and delivers a highest mass specific capacitance up to 493 F/g at 0.5 A/g. Flexible solid-state symmetric supercapacitor with GO/CNF1-6 as electrodes exhibits an energy density of 20.6 Wh/kg at a power density of 250 W/kg. The good flexibility and biocompatibility of the devices show sensitive current response to biological signals, endowing them potential application prospect in wearable portable electronics and human motion detections.
Collapse
Affiliation(s)
- Xiping Ding
- State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China
| | - Jiajia Shan
- State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China
| | - Shuting Yang
- State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China
| | - Junyan Liu
- State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China
| | - Chen Jiang
- State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China
| | - Shitao Yu
- State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China
| | - Qiong Wu
- State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China.
| |
Collapse
|
2
|
Das TN, Ramesh A, Ghosh A, Moyra S, Maji TK, Ghosh G. Peptide-based nanomaterials and their diverse applications. NANOSCALE HORIZONS 2025; 10:279-313. [PMID: 39629637 DOI: 10.1039/d4nh00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The supramolecular self-assembly of peptides offers a promising avenue for both materials science and biological applications. Peptides have garnered significant attention in molecular self-assembly, forming diverse nanostructures with α-helix, β-sheet, and random coil conformations. These self-assembly processes are primarily driven by the amphiphilic nature of peptides and stabilized by non-covalent interactions, leading to complex nanoarchitectures responsive to environmental stimuli. While extensively studied in biomedical applications, including drug delivery and tissue engineering, their potential applications in the fields of piezoresponsive materials, conducting materials, catalysis and energy harvesting remain underexplored. This review comprehensively elucidates the diverse material characteristics and applications of self-assembled peptides. We discuss the multi-stimuli-responsiveness of peptide self-assemblies and their roles as energy harvesters, catalysts, liquid crystalline materials, glass materials and contributors to electrical conductivity. Additionally, we address the challenges and present future perspectives associated with peptide nanomaterials. This review aims to provide insights into the versatile applications of peptide self-assemblies while concisely summarizing their well-established biomedical roles that have previously been extensively reviewed by various research groups, including our group.
Collapse
Affiliation(s)
- Tarak Nath Das
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Arghya Ghosh
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Sourav Moyra
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), International Centre for Materials Science (ICMS), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Censor S, Martin JV, Silberbush O, Reddy SMM, Zalk R, Friedlander L, Trabada DG, Mendieta J, Le Saux G, Moreno JIM, Zotti LA, Mateo JO, Ashkenasy N. Long-Range Proton Channels Constructed via Hierarchical Peptide Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409248. [PMID: 39530654 PMCID: PMC11636193 DOI: 10.1002/adma.202409248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Indexed: 11/16/2024]
Abstract
The quest to understand and mimic proton translocation mechanisms in natural channels has driven the development of peptide-based artificial channels facilitating efficient proton transport across nanometric membranes. It is demonstrated here that hierarchical peptide self-assembly can form micrometers-long proton nanochannels. The fourfold symmetrical peptide design leverages intermolecular aromatic interactions to align self-assembled cyclic peptide nanotubes, creating hydrophilic nanochannels between them. Titratable amino acid sidechains are positioned adjacent to each other within the channels, enabling the formation of hydrogen-bonded chains upon hydration, and facilitating efficient proton transport. Moreover, these chains are enriched with protons and water molecules by interacting with immobile counter ions introduced into the channels, increasing proton flow density and rate. This system maintains proton transfer rates closely resembling those in natural protein channels over micrometer distances. The functional behavior of these inherently recyclable and biocompatible systems opens the door for their exploitation in diverse applications in energy storage and conversion, biomedicine, and bioelectronics.
Collapse
Affiliation(s)
- Semion Censor
- Department of Materials EngineeringBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Jorge Vega Martin
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Facultad de CienciasUniversidad Autónoma de MadridMadridE‐28049Spain
| | - Ohad Silberbush
- Department of Materials EngineeringBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | | | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Lonia Friedlander
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Daniel G. Trabada
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Facultad de CienciasUniversidad Autónoma de MadridMadridE‐28049Spain
| | - Jesús Mendieta
- Departamento de BiotecnologíaUniversidad Francisco de VitoriaPozuelo de AlarcónMadridE‐28223Spain
| | - Guillaume Le Saux
- Department of Materials EngineeringBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Jesús Ignacio Mendieta Moreno
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Facultad de CienciasUniversidad Autónoma de MadridMadridE‐28049Spain
| | - Linda Angela Zotti
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Facultad de CienciasUniversidad Autónoma de MadridMadridE‐28049Spain
| | - José Ortega Mateo
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Facultad de CienciasUniversidad Autónoma de MadridMadridE‐28049Spain
| | - Nurit Ashkenasy
- Department of Materials EngineeringBen‐Gurion University of the NegevBeer‐Sheva84105Israel
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| |
Collapse
|
4
|
Grebenko AK, Motovilov KA, Bubis AV, Nasibulin AG. Gentle Patterning Approaches toward Compatibility with Bio-Organic Materials and Their Environmental Aspects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200476. [PMID: 35315215 DOI: 10.1002/smll.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale. The pure trend in the miniaturization of critical electronic semiconducting components has been recently enhanced by implementing bio-organic systems in electronics. So far, significant efforts have been made to find novel lithographic approaches and develop old ones to reach compatibility with delicate bio-organic systems and minimize the impact on the environment. Herein, such delicate materials and sophisticated patterning techniques are briefly reviewed.
Collapse
Affiliation(s)
- Artem K Grebenko
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Konstantin A Motovilov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institute Lane 9, Dolgoprudny, 141701, Russia
| | - Anton V Bubis
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 2 Academician Ossipyan str., Chernogolovka, 142432, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow, 121205, Russia
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
5
|
Roy S, Zheng L, Silberbush O, Engel M, Atsmon-Raz Y, Miller Y, Migliore A, Beratan DN, Ashkenasy N. Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures. J Phys Chem B 2021; 125:12741-12752. [PMID: 34780197 DOI: 10.1021/acs.jpcb.1c08857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure-function relationships for transport in these materials. This experimental-theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices.
Collapse
Affiliation(s)
- Subhasish Roy
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Lianjun Zheng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ohad Silberbush
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Maor Engel
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yoav Atsmon-Raz
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Agostino Migliore
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Chemical Sciences, University of Padova, Via Marzolo, 1, Padova 35131, Italy
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Physics, Duke University, Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Nurit Ashkenasy
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
6
|
|
7
|
Jia M, Kim J, Nguyen T, Duong T, Rolandi M. Natural biopolymers as proton conductors in bioelectronics. Biopolymers 2021; 112:e23433. [PMID: 34022064 DOI: 10.1002/bip.23433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Bioelectronic devices sense or deliver information at the interface between living systems and electronics by converting biological signals into electronic signals and vice-versa. Biological signals are typically carried by ions and small molecules. As such, ion conducting materials are ideal candidates in bioelectronics for an optimal interface. Among these materials, ion conducting polymers that are able to uptake water are particularly interesting because, in addition to ionic conductivity, their mechanical properties can closely match the ones of living tissue. In this review, we focus on a specific subset of ion-conducting polymers: proton (H+ ) conductors that are naturally derived. We first provide a brief introduction of the proton conduction mechanism, and then outline the chemical structure and properties of representative proton-conducting natural biopolymers: polysaccharides (chitosan and glycosaminoglycans), peptides and proteins, and melanin. We then highlight examples of using these biopolymers in bioelectronic devices. We conclude with current challenges and future prospects for broader use of natural biopolymers as proton conductors in bioelectronics and potential translational applications.
Collapse
Affiliation(s)
- Manping Jia
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Jinhwan Kim
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Tiffany Nguyen
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA.,Department of Biomedical Engineering, California State University Long Beach, Long Beach, California, USA
| | - Thi Duong
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA.,Department of Mechanical and Aerospace Engineering, The Henry Samueli School of Engineering, University of California, Irvine, California, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
8
|
Strauss MJ, Jia M, Evans AM, Castano I, Li RL, Aguilar-Enriquez X, Roesner EK, Swartz JL, Chavez AD, Enciso AE, Stoddart JF, Rolandi M, Dichtel WR. Diverse Proton-Conducting Nanotubes via a Tandem Macrocyclization and Assembly Strategy. J Am Chem Soc 2021; 143:8145-8153. [DOI: 10.1021/jacs.1c02789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael J. Strauss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Manping Jia
- Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Austin M. Evans
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ioannina Castano
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rebecca L. Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Emily K. Roesner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jeremy L. Swartz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D. Chavez
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alan E. Enciso
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - William R. Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Xu C, Kandel N, Qiao X, Khan MI, Pratakshya P, Tolouei NE, Chen B, Gorodetsky AA. Long-Range Proton Transport in Films from a Reflectin-Derived Polypeptide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20938-20946. [PMID: 33938723 DOI: 10.1021/acsami.0c18929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein- and peptide-based proton conductors have been extensively studied because of their important roles in biological processes and established potential for bioelectronic device applications. However, despite much progress, the demonstration of long-range proton transport for such materials has remained relatively rare. Herein, we fabricate, electrically interrogate, and physically characterize films from a reflectin-derived polypeptide. The electrical measurements indicate that device-integrated films exhibit proton conductivities with values of ∼0.4 mS/cm and sustain proton transport over distances of ∼1 mm. The accompanying physical characterization indicates that the polypeptide possesses characteristics analogous to those of the parent protein class and furnishes insight into the relationship between the polypeptide's electrical functionality and structure in the solid state. When considered together, our findings hold significance for the continued development and engineering of not only reflectin-based materials but also other bioinspired proton conductors.
Collapse
Affiliation(s)
- Chengyi Xu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Nabin Kandel
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xin Qiao
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Md Imran Khan
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Preeta Pratakshya
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Nadia E Tolouei
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Bo Chen
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Alon A Gorodetsky
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
10
|
Duan G, Zhao L, Chen L, Wang F, He S, Jiang S, Zhang Q. ZnCl 2 regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. NEW J CHEM 2021. [DOI: 10.1039/d1nj04667e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We systemically control the specific surface area and pore structure of flax-based carbon fibers by impregnating with zinc chloride (ZnCl2) solution. The results show that ZnCl2 affects the microstructure and the specific capacitance.
Collapse
Affiliation(s)
- Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Luying Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Feng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuijian He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
11
|
Reddy SMM, Raßlenberg E, Sloan-Dennison S, Hesketh T, Silberbush O, Tuttle T, Smith E, Graham D, Faulds K, Ulijn RV, Ashkenasy N, Lampel A. Proton-Conductive Melanin-Like Fibers through Enzymatic Oxidation of a Self-Assembling Peptide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003511. [PMID: 33058283 DOI: 10.1002/adma.202003511] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Melanin pigments have various properties that are of technological interest including photo- and radiation protection, rich coloration, and electronic functions. Nevertheless, laboratory-based synthesis of melanin and melanin-like materials with morphologies and chemical structures that are specifically optimized for these applications, is currently not possible. Here, melanin-like materials that are produced by enzymatic oxidation of a supramolecular tripeptide structures that are rich in tyrosine and have a 1D morphology are demonstrated, that are retained during the oxidation process while conducting tracks form through oxidative tyrosine crosslinking. Specifically, a minimalistic self-assembling peptide, Lys-Tyr-Tyr (KYY) with strong propensity to form supramolecular fibers, is utilized. Analysis by Raman spectroscopy shows that the tyrosines are pre-organized inside these fibers and, upon enzymatic oxidation, result in connected catechols. These form 1D conducting tracks along the length of the fiber, which gives rise to a level of internal disorder, but retention of the fiber morphology. This results in highly conductive structures demonstrated to be dominated by proton conduction. This work demonstrates the ability to control oxidation but retain a well-defined fibrous morphology that does not have a known equivalent in biology, and demonstrate exceptional conductivity that is enhanced by enzymatic oxidation.
Collapse
Affiliation(s)
- Samala Murali Mohan Reddy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Eileen Raßlenberg
- Organisch-Chemisches Institut, University of Muenster, Corrensstraße 40, Muenster, 48149, Germany
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Travis Hesketh
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ohad Silberbush
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Ewen Smith
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
- Ph.D. programs in Biochemistry and Chemistry, The Graduate Center of the City, University of New York, New York, NY, 10016, USA
| | - Nurit Ashkenasy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel
| | - Ayala Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), 85 St Nicholas Terrace, New York, NY, 10031, USA
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
12
|
Wang Y, An Y, Shmidov Y, Bitton R, Deshmukh SA, Matson JB. A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices. MATERIALS CHEMISTRY FRONTIERS 2020; 4:3022-3031. [PMID: 33163198 PMCID: PMC7643854 DOI: 10.1039/d0qm00369g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reported here is a combined experimental-computational strategy to determine structure-property-function relationships in persistent nanohelices formed by a set of aromatic peptide amphiphile (APA) tetramers with the general structure K S XEK S , where KS= S-aroylthiooxime modified lysine, X = glutamic acid or citrulline, and E = glutamic acid. In low phosphate buffer concentrations, the APAs self-assembled into flat nanoribbons, but in high phosphate buffer concentrations they formed nanohelices with regular twisting pitches ranging from 9-31 nm. Coarse-grained molecular dynamics simulations mimicking low and high salt concentrations matched experimental observations, and analysis of simulations revealed that increasing strength of hydrophobic interactions under high salt conditions compared with low salt conditions drove intramolecular collapse of the APAs, leading to nanohelix formation. Analysis of the radial distribution functions in the final self-assembled structures led to several insights. For example, comparing distances between water beads and beads representing hydrolysable KS units in the APAs indicated that the KS units in the nanohelices should undergo hydrolysis faster than those in the nanoribbons; experimental results verified this hypothesis. Simulation results also suggested that these nanohelices might display high ionic conductivity due to closer packing of carboxylate beads in the nanohelices than in the nanoribbons. Experimental results showed no conductivity increase over baseline buffer values for unassembled APAs, a slight increase (0.4 × 102 μS/cm) for self-assembled APAs under low salt conditions in their nanoribbon form, and a dramatic increase (8.6 × 102 μS/cm) under high salt conditions in their nanohelix form. Remarkably, under the same salt conditions, these self-assembled nanohelices conducted ions 5-10-fold more efficiently than several charged polymers, including alginate and DNA. These results highlight how experiments and simulations can be combined to provide insight into how molecular design affects self-assembly pathways; additionally, this work highlights how this approach can lead to discovery of unexpected properties of self-assembled nanostructures.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yaxin An
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|