1
|
Brown LC, Hinnant KM, Daniels GC, Sudol PE, Vaughan SR, Weise NK, Giordano BC. Tailoring Amphiphilic Copolymers for Improved Aqueous Foam Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37315164 DOI: 10.1021/acs.langmuir.2c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amphiphilic copolymers of various-molecular-weight (MW) poly(ethylene glycol) (PEG) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The first PEG series, poly(ethylene glycol)monomethacrylate (PEGMA, average Mn 200 and 400 MW), contained an -OH terminal group, and the second series, poly(ethylene glycol) monomethyl ether monomethacrylate (PEGMMA, average Mn 200, 400, and 1000 MW), possessed an -OCH3 terminal group. A total of five PEG-functionalized copolymers contained the same hydrophobic monomer, butyl acrylate (BA), and were successfully reproduced via a one-pot synthesis. The resulting PEG-functionalized copolymers provide a systematic trend of properties including surface tension, critical micelle concentration (CMC), cloud point (CP), and foam lifetime based on the average MW of the PEG monomer and final polymer properties. In general, the PEGMA series produced more stable foams with PEGMA200 demonstrating the least change in foam height with time over a 10 min period. The important exception is that at elevated temperatures, the PEGMMA1000 copolymer had longer foam lifetimes. The self-assembling copolymers were characterized by gel permeation chromatography (GPC), 1H nuclear magnetic resonance (NMR), attenuated total reflection Fourier transform infrared (FTIR-ATR), CMC, surface tension, dynamic light scattering (DLS), as a foam using a dynamic foam analyzer (DFA), and foam lifetime at ambient and elevated temperatures. The copolymers described highlight the importance of the PEG monomer MW and terminal end group for surface interaction and final polymer properties for foam stabilization.
Collapse
Affiliation(s)
- Loren C Brown
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
- ASEE Post-Doctoral Fellow, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Katherine M Hinnant
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Grant C Daniels
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Paige E Sudol
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
- NRC Post-Doctoral Fellow, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Stephanie R Vaughan
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
- ASEE Post-Doctoral Fellow, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Nickolaus K Weise
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Braden C Giordano
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
2
|
Dynamics of a PEG based polymer gel Electrolyte: A combined frequency dependent dielectric relaxation and Time-resolved fluorescence spectroscopic study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Coumarin 343 in aqueous solution: theoretical analysis of absorption. J Mol Model 2022; 28:126. [PMID: 35460442 DOI: 10.1007/s00894-022-05122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Vibronic coupling and hydration were taken into account when describing the absorption of coumarin C343 (both neutral and anionic forms) in an aqueous media. It was shown that the B3LYP functional with the 6-31 + + G(d,p) basis set and the IEFPCM solvent continuum model give theoretical vibronic absorption spectra, which are coincide with the experimental ones. Of the structural differences between C3430 and C343-, there is a different twisting of the carboxyl group additionally changing due to excitation. Upon excitation, a significant shift in the electron density occurs from the C10 atom to the C4 atom only. Thus, a charge transfer on the scale of the entire molecule does not occur. Different hydration complexes with strongly bound water molecules have been analyzed.
Collapse
|
4
|
Akar I, Foster JC, Leng X, Pearce AK, Mathers RT, O’Reilly RK. Log Poct/SA Predicts the Thermoresponsive Behavior of P(DMA- co-RA) Statistical Copolymers. ACS Macro Lett 2022; 11:498-503. [PMID: 35575334 PMCID: PMC9022432 DOI: 10.1021/acsmacrolett.1c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Polymers that exhibit
a lower critical solution temperature (LCST)
have been of great interest for various biological applications such
as drug or gene delivery, controlled release systems, and biosensing.
Tuning the LCST behavior through control over polymer composition
(e.g., upon copolymerization of monomers with different hydrophobicity)
is a widely used method, as the phase transition is greatly affected
by the hydrophilic/hydrophobic balance of the copolymers. However,
the lack of a general method that relates copolymer hydrophobicity
to their temperature response leads to exhaustive experiments when
seeking to obtain polymers with desired properties. This is particularly
challenging when the target copolymers are comprised of monomers that
individually form nonresponsive homopolymers, that is, only when copolymerized
do they display thermoresponsive behavior. In this study, we sought
to develop a predictive relationship between polymer hydrophobicity
and cloud point temperature (TCP). A series
of statistical copolymers were synthesized based on hydrophilic N,N-dimethyl acrylamide (DMA) and hydrophobic
alkyl acrylate monomers, and their hydrophobicity was compared using
surface area-normalized octanol/water partition coefficients (Log Poct/SA). Interestingly, a correlation between
the Log Poct/SA of the copolymers and
their TCPs was observed for the P(DMA-co-RA) copolymers, which allowed TCP prediction of a demonstrative copolymer P(DMA-co-MMA). These results highlight the strong potential of this computational
tool to improve the rational design of copolymers with desired temperature
responses prior to synthesis.
Collapse
Affiliation(s)
- Irem Akar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xiyue Leng
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert T. Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Liu H, Lionello C, Westley J, Cardellini A, Huynh U, Pavan GM, Thayumanavan S. Understanding functional group and assembly dynamics in temperature responsive systems leads to design principles for enzyme responsive assemblies. NANOSCALE 2021; 13:11568-11575. [PMID: 34190280 DOI: 10.1039/d1nr02000e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the molecular rules behind the dynamics of supramolecular assemblies is fundamentally important for the rational design of responsive assemblies with tunable properties. Herein, we report that the dynamics of temperature-sensitive supramolecular assemblies is not only affected by the dehydration of oligoethylene glycol (OEG) motifs, but also by the thermally-promoted molecular motions. These counteracting features set up a dynamics transition point (DTP) that can be modulated with subtle variations in a small hydrophobic patch on the hydrophilic face of the amphiphilic assembly. Understanding the structural factors that control the dynamics of the assemblies leads to rational design of enzyme-responsive assemblies with tunable temperature responsive profiles.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - Chiara Lionello
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| | - Jenna Westley
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - Annalisa Cardellini
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| | - Uyen Huynh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy. and Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
7
|
Kumbhakar K, Dey A, Mondal A, De P, Biswas R. Interactions and Dynamics in Aqueous Solutions of pH-Responsive Polymers: A Combined Fluorescence and Dielectric Relaxation Study. J Phys Chem B 2021; 125:6023-6035. [PMID: 34057364 DOI: 10.1021/acs.jpcb.1c03435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction and dynamics of aqueous solutions of pH-responsive smart polymers are investigated via steady-state, time-resolved fluorescence emission spectroscopy with the help of external local reporter coumarin 153 (C153), while MHz to GHz dielectric relaxation spectroscopic (DRS) measurement reports the intrinsic medium relaxation features. A series of pH-responsive random copolymers (DPL-DP60) comprising of a pH-responsive moiety 2-((leucinyl)oxy)ethyl methacrylate (l-Leu-HEMA) and hydrophobic methyl methacrylate (MMA) are synthesized and characterized. A balance between the pH-responsive (l-Leu-HEMA) and the hydrophobic (MMA) content dictates the phase transition pH, which is found to be ∼5-7 for these aqueous copolymer solutions (1 mg/mL). Dynamic light scattering measurements in aqueous solutions of these polymers reflect a small particle size (∼2-8 nm) at solution pH below their individual phase transition pH, while a large particle size (∼140-340 nm) forms beyond their phase transition pH. No signature of a phase transition pH-driven abrupt change in static and dynamic properties of aqueous polymer solutions has been registered from pH-dependent dielectric relaxation as well as solute (C153)-centric fluorescence measurements. A significant impact of varying the l-Leu-HEMA/MMA segment ratio on steady-state fluorescence emission and rotational anisotropy decay of the fluorophore solute (C153) has been observed. MHz to GHz DRS in aqueous solutions of these pH-responsive polymers reflects bulk water-like dielectric features.
Collapse
Affiliation(s)
- Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Amrita Mondal
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|