1
|
Özdemir AY, Hofbauerová K, Kopecký V, Novotný J, Rudajev V. Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. Cell Mol Biol Lett 2024; 29:143. [PMID: 39551742 PMCID: PMC11572474 DOI: 10.1186/s11658-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
Collapse
Affiliation(s)
- Alp Yigit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
2
|
Mondal S, Karmakar T. Insights into the mechanism of peptide fibril growth on gold surface. Biophys Chem 2024; 310:107237. [PMID: 38640598 DOI: 10.1016/j.bpc.2024.107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Understanding the formation of β-fibrils over the gold surface is of paramount interest in nano-bio-medicinal Chemistry. The intricate mechanism of self-assembly of neurofibrillogenic peptides and their growth over the gold surface remains elusive, as experiments are limited in unveiling the microscopic dynamic details, in particular, at the early stage of the peptide aggregation. In this work, we carried out equilibrium molecular dynamics and enhanced sampling simulations to elucidate the underlying mechanism of the growth of an amyloid-forming sequence of tau fragments over the gold surface. Our results disclose that the collective intermolecular interactions between the peptide chains and peptides with the gold surface facilitate the peptide adsorption, followed by integration, finally leading to the fibril formation.
Collapse
Affiliation(s)
- Soumya Mondal
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 110016, Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 110016, Delhi, India.
| |
Collapse
|
3
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Paul S, Jeništová A, Vosough F, Berntsson E, Mörman C, Jarvet J, Gräslund A, Wärmländer SKTS, Barth A. 13C- and 15N-labeling of amyloid-β and inhibitory peptides to study their interaction via nanoscale infrared spectroscopy. Commun Chem 2023; 6:163. [PMID: 37537303 PMCID: PMC10400569 DOI: 10.1038/s42004-023-00955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Interactions between molecules are fundamental in biology. They occur also between amyloidogenic peptides or proteins that are associated with different amyloid diseases, which makes it important to study the mutual influence of two polypeptides on each other's properties in mixed samples. However, addressing this research question with imaging techniques faces the challenge to distinguish different polypeptides without adding artificial probes for detection. Here, we show that nanoscale infrared spectroscopy in combination with 13C, 15N-labeling solves this problem. We studied aggregated amyloid-β peptide (Aβ) and its interaction with an inhibitory peptide (NCAM1-PrP) using scattering-type scanning near-field optical microscopy. Although having similar secondary structure, labeled and unlabeled peptides could be distinguished by comparing optical phase images taken at wavenumbers characteristic for either the labeled or the unlabeled peptide. NCAM1-PrP seems to be able to associate with or to dissolve existing Aβ fibrils because pure Aβ fibrils were not detected after mixing.
Collapse
Affiliation(s)
- Suman Paul
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- attocube systems AG, Haar, Germany
| | - Adéla Jeništová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Cecilia Mörman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Amyloid-β 42 oligomeric forms: AFM nanoscale structural characterization and impact on long-term memory of young and aged zebrafish. Neuroscience 2022; 497:271-281. [PMID: 35272003 DOI: 10.1016/j.neuroscience.2022.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 11/23/2022]
Abstract
The contribution of amyloid-β (Aβ) soluble forms to Alzheimer's Disease (AD) is undergoing revision and the characterization of monomeric, oligomeric and protofibrillar Aβ forms used in vivo to model AD is a critical step to ensure data interpretation. Atomic force microscopy (AFM) was used to characterize the nanoscale morphology of different Aβ42 forms also used for cerebroventricular injection (cvi) in young (6mo) and aged (36mo) adult zebrafish behavioral and cognitive tests. On the AFM, monomeric solution deposited onto mica resulted mostly in thin filamentous structures and shorter monomeric agglomerates with heights around or below 1.5 nm, as expected for single Aβ42. The oligomeric form was dominated by particles with globular morphology and a few short aggregates around 1 nm high and 8-12 nm long. The protofibrillar form had micrometer-long twisted fibrils of varying diameters (4.5 to 10nm) and large entangled clusters with sizes of up to several tens of micrometers. On the Open Tank used to test exploratory parameters, no differences were observed between injected animals and their age-matched controls, except for a reduced distance travelled by aged individuals that received the Aβ42 oligomeric form. Long-term memory (LTM) for the inhibitory avoidance task was not influenced by monomers cvi, whilst oligomeric and fibrillar Aβ42 hindered LTM formation in young and aged groups. Our findings support current views of deleterious effects of Aβ42 soluble forms on cognition and ensures that preparations were structurally unique and within expected morphologies and dimensions.
Collapse
|
6
|
Nirmalraj PN, Schneider T, Felbecker A. Spatial organization of protein aggregates on red blood cells as physical biomarkers of Alzheimer's disease pathology. SCIENCE ADVANCES 2021; 7:eabj2137. [PMID: 34559561 PMCID: PMC8462905 DOI: 10.1126/sciadv.abj2137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Quantifying physical differences of protein aggregates implicated in Alzheimer’s disease (AD), in blood, could provide crucial information on disease stages. Here, red blood cells (RBCs) from 50 patients with neurocognitive complaints and 16 healthy individuals were profiled using an atomic force microscope (AFM). AFM measurements revealed patient age– and stage of neurocognitive disorder–dependent differences in size, shape, morphology, assembly, and prevalence of protein aggregates on RBCs, referred to as physical biomarkers. Crystals composed of fibrils were exclusively detected on RBCs for AD patients aged above 80 years. Fibril prevalence was negatively correlated with the cerebrospinal fluid (CSF) β-amyloid (Aβ) 42/40 ratio and was observed to be higher in the Aβ-positive patient category. Using a cutoff of ≥40% fibril prevalence, the CSF Aβ status was classified with 88% accuracy (sensitivity 100%, specificity 73%). The merits and challenges in integrating physical biomarkers in AD diagnosis are discussed.
Collapse
Affiliation(s)
- Peter Niraj Nirmalraj
- Transport at Nanoscale Interfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Thomas Schneider
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| | - Ansgar Felbecker
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| |
Collapse
|
7
|
Tian M, Li B, Shen L. Hierarchical Self-Assembly Mechanism of Ladder-Like Orientated Aβ40 Single-Stranded Protofibrils into Multistranded Mature Fibrils. ACS Macro Lett 2020; 9:1759-1765. [PMID: 35653679 DOI: 10.1021/acsmacrolett.0c00622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complex self-assembly processes in three dimensions of Alzheimer's β-peptide (Aβ) amyloid protofibrils into polymorphic mature fibrils, particularly the relative protofibril orientation and packing mechanism, are poorly understood. We report here the identification and quantification of the hierarchical self-assembly details among distinct Aβ40 fibrils, particularly the winding pictures of two, three, and four individual single-stranded protofibrils into two-, three-, and four-stranded mature fibrils, respectively, via cross-sectional analysis of atomic force microscopy (AFM) images. The statistical polymer physics analysis of fibril flexibilities from AFM characterizations as well as molecular dynamics (MD) simulations reveal a ladder-like packing mechanism rather than a closed-packing manner for the interprotofibril association into Aβ40 mature fibrils. Moreover, our MD results show atomic packing polymorphism at the well-packing interfaces even within the same multistranded fibril. This work provides mechanistic insights into the polymorphic transition of single-stranded Aβ40 protofibrils into multistranded mature fibrils at the mesoscopic level, which is useful for a more comprehensive understanding of Alzheimer's β-peptide amyloidosis.
Collapse
Affiliation(s)
- Mengting Tian
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Bei Li
- Research Center for Materials Genome Engineering, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|