1
|
Sarter M, Stewart JR, Nilsen GJ, Devonport M, Nemkovski K. Data Analysis of Dynamics in Protein Solutions Using Quasi-Elastic Neutron Scattering─Important Insights from Polarized Neutrons. J Am Chem Soc 2024; 146. [PMID: 39360952 PMCID: PMC11488478 DOI: 10.1021/jacs.4c06273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
Protein dynamics play a vital role in biology. Quasi elastic neutron scattering (QENS) is an ideal method to access these dynamics. To isolate protein dynamics, it is important to separate the signal of the buffer and the protein. Normally data analysis is performed based on the assumption that the scattering spectrum is incoherent. To observe the full range of protein dynamics, it is necessary to perform the experiments in solution. This solution is usually a fully deuterated buffer, while the protein remains protonated. It is generally assumed that subtracting the buffer contribution removes all coherent signal from the measured spectrum, and the rest can be considered as purely incoherent. Up until recently, there was no way to experimentally verify this assumption. Polarized QENS experiments allow for the coherent and incoherent contributions to be separated. By comparing the results from the polarized QENS experiment and the standard analysis method from unpolarized QENS, we are thus able to check this assumption experimentally. We show that the pure incoherent spectrum obtained from polarization analysis does not match the results for unpolarized QENS. We discuss the implications of this for data analysis and possible solutions to the problem, as well as mitigation techniques for standard QENS.
Collapse
Affiliation(s)
- Mona Sarter
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - J Ross Stewart
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Gøran Jan Nilsen
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Mark Devonport
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| | - Kirill Nemkovski
- STFC Rutherford Appleton
Laboratory, ISIS Neutron and Muon Facility, Chilton, Didcot OX11 0QX, U.K.
| |
Collapse
|
2
|
Osti NC, Jalarvo N, Mamontov E. Backscattering silicon spectrometer (BASIS): sixteen years in advanced materials characterization. MATERIALS HORIZONS 2024; 11:4535-4572. [PMID: 39162617 DOI: 10.1039/d4mh00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Quasielastic neutron scattering (QENS) is an experimental technique that can measure parameters of mobility, such as diffusion jump rate and jump length, as well as localized relaxations of chemical species (molecules, ions, and segments) at atomic and nanometer length scales. Due to the high penetrative power of neutrons and their sensitivity to neutron scattering cross-section of chemical species, QENS can effectively probe mobility inside most bulk materials. This review focuses on QENS experiments performed using a neutron backscattering silicon spectrometer (BASIS) to explore the dynamics in various materials and understand their structure-property relationship. BASIS is a time-of-flight near-backscattering inverted geometry spectrometer with very high energy resolution (approximately 0.0035 meV of full width at half maximum), allowing measurements of dynamics on nano to picosecond timescales. The science areas studied with BASIS are diverse, with a focus on soft matter topics, including traditional biological and polymer science experiments, as well as measurements of fluids ranging from simple hydrocarbons and aqueous solutions to relatively complex room-temperature ionic liquids and deep-eutectic solvents, either in the bulk state or confined. Additionally, hydrogen confined in various materials is routinely measured on BASIS. Other topics successfully investigated at BASIS include quantum fluids, spin glasses, and magnetism. BASIS has been in the user program since 2007 at the Spallation Neutron Source of the Oak Ridge National Laboratory, an Office of Science User Facility supported by the U.S. Department of Energy. Over the past sixteen years, BASIS has contributed to various scientific disciplines, exploring the structure and dynamics of many chemical species and their fabrication for practical applications. A comprehensive review of BASIS contributions and capabilities would be an asset to the materials science community, providing insights into employing the neutron backscattering technique for advanced materials characterization.
Collapse
Affiliation(s)
- Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Niina Jalarvo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
3
|
Inoue R, Nagata Y, Tominaga T, Sato S, Kawakita Y, Yamawaki T, Morishima K, Suginome M, Sugiyama M. Dynamics of side chains in poly(quinoxaline-2,3-diyl)s studied via quasielastic neutron scattering. J Chem Phys 2024; 161:054905. [PMID: 39092953 DOI: 10.1063/5.0215603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The side chain dynamics of poly(quinoxaline-2,3-diyl)s (PQXs) are expected to influence their conformation. To investigate these dynamics experimentally, quasielastic neutron scattering (QENS) was performed for PQXs in deuterated tetrahydrofuran (THF-d8) and deuterated 1,1,2-trichloroethane/THF (1,1,2-TCE-d3/THF-d8), in which they formed right-handed and left-handed helical structures, respectively. The mean-square displacement of the PQX side chains in 1,1,2-TCE-d3/THF-d8 was lower than that in THF-d8. Furthermore, QENS complementary studies and molecular dynamics simulations unraveled a coupling between the main-chain and side chain dynamics of PQXs, suggesting the possibility of controlling the main-chain helical chirality through the dynamics of chiral side chains. These insights present a novel strategy for the design of synthetic helical macromolecules with precise chirality control.
Collapse
Affiliation(s)
- R Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Y Nagata
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - T Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan
| | - S Sato
- Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan
| | - Y Kawakita
- Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195, Japan
| | - T Yamawaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - K Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - M Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - M Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
4
|
Rudani BA, Jakubowski A, Kriegs H, Wiegand S. Deciphering the guanidinium cation: Insights into thermal diffusion. J Chem Phys 2024; 160:214502. [PMID: 38828819 DOI: 10.1063/5.0215843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Thermophoresis, or thermodiffusion, is becoming a more popular method for investigating the interactions between proteins and ligands due to its high sensitivity to the interactions between solutes and water. Despite its growing use, the intricate mechanisms behind thermodiffusion remain unclear. This gap in knowledge stems from the complexities of thermodiffusion in solvents that have specific interactions as well as the intricate nature of systems that include many components with both non-ionic and ionic groups. To deepen our understanding, we reduce complexity by conducting systematic studies on aqueous salt solutions. In this work, we focused on how guanidinium salt solutions behave in a temperature gradient, using thermal diffusion forced Rayleigh scattering experiments at temperatures ranging from 15 to 35 °C. We looked at the thermodiffusive behavior of four guanidinium salts (thiocyanate, iodide, chloride, and carbonate) in solutions with concentrations ranging from 1 to 3 mol/kg. The guanidinium cation is disk-shaped and is characterized by flat hydrophobic surfaces and three amine groups, which enable directional hydrogen bonding along the edges. We compare our results to the behavior of salts with spherical cations, such as sodium, potassium, and lithium. Our discussions are framed around how different salts are solvated, specifically in the context of the Hofmeister series, which ranks ions based on their effects on the solvation of proteins.
Collapse
Affiliation(s)
- Binny A Rudani
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Andre Jakubowski
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Hartmut Kriegs
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Simone Wiegand
- IBI-4:Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| |
Collapse
|
5
|
Eberhardt J, Forli S. WaterKit: Thermodynamic Profiling of Protein Hydration Sites. J Chem Theory Comput 2023; 19:2535-2556. [PMID: 37094087 PMCID: PMC10732097 DOI: 10.1021/acs.jctc.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Water desolvation is one of the key components of the free energy of binding of small molecules to their receptors. Thus, understanding the energetic balance of solvation and desolvation resulting from individual water molecules can be crucial when estimating ligand binding, especially when evaluating different molecules and poses as done in High-Throughput Virtual Screening (HTVS). Over the most recent decades, several methods were developed to tackle this problem, ranging from fast approximate methods (usually empirical functions using either discrete atom-atom pairwise interactions or continuum solvent models) to more computationally expensive and accurate ones, mostly based on Molecular Dynamics (MD) simulations, such as Grid Inhomogeneous Solvation Theory (GIST) or Double Decoupling. On one hand, MD-based methods are prohibitive to use in HTVS to estimate the role of waters on the fly for each ligand. On the other hand, fast and approximate methods show an unsatisfactory level of accuracy, with low agreement with results obtained with the more expensive methods. Here we introduce WaterKit, a new grid-based sampling method with explicit water molecules to calculate thermodynamic properties using the GIST method. Our results show that the discrete placement of water molecules is successful in reproducing the position of crystallographic waters with very high accuracy, as well as providing thermodynamic estimates with accuracy comparable to more expensive MD simulations. Unlike these methods, WaterKit can be used to analyze specific regions on the protein surface, (such as the binding site of a receptor), without having to hydrate and simulate the whole receptor structure. The results show the feasibility of a general and fast method to compute thermodynamic properties of water molecules, making it well-suited to be integrated in high-throughput pipelines such as molecular docking.
Collapse
Affiliation(s)
- Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
7
|
Mohanakumar S, Lee N, Wiegand S. Complementary Experimental Methods to Obtain Thermodynamic Parameters of Protein Ligand Systems. Int J Mol Sci 2022; 23:ijms232214198. [PMID: 36430678 PMCID: PMC9692857 DOI: 10.3390/ijms232214198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, thermophoresis has emerged as a promising tool for quantifying biomolecular interactions. The underlying microscopic physical effect is still not understood, but often attributed to changes in the hydration layer once the binding occurs. To gain deeper insight, we investigate whether non-equilibrium coefficients can be related to equilibrium properties. Therefore, we compare thermophoretic data measured by thermal diffusion forced Rayleigh scattering (TDFRS) (which is a non-equilibrium process) with thermodynamic data obtained by isothermal titration calorimetry (ITC) (which is an equilibrium process). As a reference system, we studied the chelation reaction between ethylenediaminetetraacetic acid (EDTA) and calcium chloride (CaCl2) to relate the thermophoretic behavior quantified by the Soret coefficient ST to the Gibb's free energy ΔG determined in the ITC experiment using an expression proposed by Eastman. Finally, we have studied the binding of the protein Bovine Carbonic Anhydrase I (BCA I) to two different benzenesulfonamide derivatives: 4-fluorobenzenesulfonamide (4FBS) and pentafluorobenzenesulfonamide (PFBS). For all three systems, we find that the Gibb's free energies calculated from ST agree with ΔG from the ITC experiment. In addition, we also investigate the influence of fluorescent labeling, which allows measurements in a thermophoretic microfluidic cell. Re-examination of the fluorescently labeled system using ITC showed a strong influence of the dye on the binding behavior.
Collapse
Affiliation(s)
- Shilpa Mohanakumar
- IBI-4—Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Namkyu Lee
- IBI-4—Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Simone Wiegand
- IBI-4—Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
- Chemistry Department-Physical Chemistry, University of Colgone, D-50939 Cologne, Germany
- Correspondence: ; Tel.: +49-2461-61-6654
| |
Collapse
|
8
|
Raskar T, Niebling S, Devos JM, Yorke BA, Härtlein M, Huse N, Forsyth VT, Seydel T, Pearson AR. Structure and diffusive dynamics of aspartate α-decarboxylase (ADC) liganded with D-serine in aqueous solution. Phys Chem Chem Phys 2022; 24:20336-20347. [PMID: 35980136 PMCID: PMC9429672 DOI: 10.1039/d2cp02063g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of Escherichia coli aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the d-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that d-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns–ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers. Neutron spectroscopy, dynamic light scattering, X-ray diffraction, and MD-simulations were used to investigate the effect of ligand binding on the structure and diffusive dynamics of Escherichia coli aspartate alpha-decarboxylase.![]()
Collapse
Affiliation(s)
- Tushar Raskar
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France.,Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| | - Stephan Niebling
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany. .,European Molecular Biology Laboratory, Hamburg, Notkestr. 85, 22607 Hamburg, Germany
| | - Juliette M Devos
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Briony A Yorke
- School of Chemistry and Bioscience, University of Bradford, Bradford, BD7 1DP, UK
| | - Michael Härtlein
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Nils Huse
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| | - V Trevor Forsyth
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France. .,Partnership for Structural Biology, 71 Avenue des Martyrs, Grenoble 38000, France.,Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.
| | - Arwen R Pearson
- Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, Hamburg, 22761, Germany.
| |
Collapse
|
9
|
Renner AM, Derichsweiler C, Ilyas S, Gessner I, Fries JWU, Mathur S. High efficiency capture of biomarker miRNA15a for noninvasive diagnosis of malignant kidney tumors. Biomater Sci 2022; 10:1113-1122. [PMID: 35048092 DOI: 10.1039/d1bm01737c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To date, there are no preoperative and quantitative dynamics in clinical practice that can reliably differentiate between a benign and malignant renal cell carcinoma (RCC). For monitoring different analytes in body fluids, more than 40 different molecular biomarkers have been identified, however, they are associated with limited clinical sensitivity and/or non-optimal specificity due to their leaky nature. Previous work on RCC demonstrated the miRNA15a to be reliable and novel biomarker with 98.1% specificity and 100% sensitivity. Despite the high potential of miRNA15a biomarker, its clinical application is considerably hampered by the insensitive nature of the detection methods and low concentration of biomarker in samples that is aggravated by the high level of contamination due to other solutes present in body fluids. In this work, a non-invasive quantitative approach is demonstrated to overcome such diagnostics issues through biotin-streptavidin binding and fluorescence active magnetic nanocarriers that ensured prompt isolation, enrichment and purification of the biomarker miRNA15a from urine. The study demonstrates that detectable low levels of these miRNAs through miRNA capturing nanocarriers can potentially function as advanced diagnostic markers for the non-invasive investigation and early detection of renal cancer.
Collapse
Affiliation(s)
- Alexander M Renner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Christina Derichsweiler
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Isabel Gessner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| | - Jochen W U Fries
- Institute of Urology/Pathology, University Hospital of Cologne, Kerpenerstr. 62, 50924 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
| |
Collapse
|
10
|
Sarter M, Niether D, Wiegand S, Fitter J, Stadler AM. Complementary approaches to obtaining thermodynamic parameters from protein ligand systems-challenges and opportunities. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227201016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein ligand interactions play an important role in biology. Increasingly the aim is to understand and influence protein ligand binding. The binding process is heavily influenced by its thermodynamic parameters. In order to understand how the whole system thermodynamics work it is important to characterise the individual contribution of each of the systems components. While the change in conformational entropy of the protein can be determined using QENS complementary methods are necessary in order to characterise all components. This paper will describe the challenges that can occur when combining the different methods, as well as how they can be overcome.
Collapse
|
11
|
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Smola M, Gutten O, Dejmek M, Kožíšek M, Evangelidis T, Tehrani ZA, Novotná B, Nencka R, Birkuš G, Rulíšek L, Boura E. Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angew Chem Int Ed Engl 2021; 60:10172-10178. [PMID: 33616279 PMCID: PMC8251555 DOI: 10.1002/anie.202016805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/19/2022]
Abstract
STING (stimulator of interferon genes) is a key regulator of innate immunity that has recently been recognized as a promising drug target. STING is activated by cyclic dinucleotides (CDNs) which eventually leads to expression of type I interferons and other cytokines. Factors underlying the affinity of various CDN analogues are poorly understood. Herein, we correlate structural biology, isothermal calorimetry (ITC) and computational modeling to elucidate factors contributing to binding of six CDNs-three pairs of natural (ribo) and fluorinated (2'-fluororibo) 3',3'-CDNs. X-ray structural analyses of six {STING:CDN} complexes did not offer any explanation for the different affinities of the studied ligands. ITC showed entropy/enthalpy compensation up to 25 kcal mol-1 for this set of similar ligands. The higher affinities of fluorinated analogues are explained with help of computational methods by smaller loss of entropy upon binding and by smaller strain (free) energy.
Collapse
Affiliation(s)
- Miroslav Smola
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Ondrej Gutten
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Milan Dejmek
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Milan Kožíšek
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Thomas Evangelidis
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Zahra Aliakbar Tehrani
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Barbora Novotná
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Radim Nencka
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Gabriel Birkuš
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Lubomír Rulíšek
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| | - Evzen Boura
- Gilead Sciences Research Centre at IOCBInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo náměstí 216610PragueCzech Republic
| |
Collapse
|
13
|
Smola M, Gutten O, Dejmek M, Kožíšek M, Evangelidis T, Tehrani ZA, Novotná B, Nencka R, Birkuš G, Rulíšek L, Boura E. Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Miroslav Smola
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Ondrej Gutten
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Milan Dejmek
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Milan Kožíšek
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Thomas Evangelidis
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Zahra Aliakbar Tehrani
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Barbora Novotná
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Radim Nencka
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Gabriel Birkuš
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Lubomír Rulíšek
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Evzen Boura
- Gilead Sciences Research Centre at IOCB Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
14
|
Mohanakumar S, Luettmer-Strathmann J, Wiegand S. Thermodiffusion of aqueous solutions of various potassium salts. J Chem Phys 2021; 154:084506. [DOI: 10.1063/5.0038039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Shilpa Mohanakumar
- IBI-4: Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Jutta Luettmer-Strathmann
- Department of Physics and Department of Chemistry, The University of Akron, Akron, Ohio 44325-4001, USA
| | - Simone Wiegand
- IBI-4: Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| |
Collapse
|
15
|
Dynamics of proteins with different molecular structures under solution condition. Sci Rep 2020; 10:21678. [PMID: 33303822 PMCID: PMC7728768 DOI: 10.1038/s41598-020-78311-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/20/2020] [Indexed: 11/08/2022] Open
Abstract
Incoherent quasielastic neutron scattering (iQENS) is a fascinating technique for investigating the internal dynamics of protein. However, low flux of neutron beam, low signal to noise ratio of QENS spectrometers and unavailability of well-established analyzing method have been obstacles for studying internal dynamics under physiological condition (in solution). The recent progress of neutron source and spectrometer provide the fine iQENS profile with high statistics and as well the progress of computational technique enable us to quantitatively reveal the internal dynamic from the obtained iQENS profile. The internal dynamics of two proteins, globular domain protein (GDP) and intrinsically disordered protein (IDP) in solution, were measured with the state-of-the art QENS spectrometer and then revealed with the newly developed analyzing method. It was clarified that the average relaxation rate of IDP was larger than that of GDP and the fraction of mobile H atoms of IDP was also much higher than that of GDP. Combined with the structural analysis and the calculation of solvent accessible surface area of amino acid residue, it was concluded that the internal dynamics were related to the highly solvent exposed amino acid residues depending upon protein's structure.
Collapse
|
16
|
Gruber S, Löf A, Sedlak SM, Benoit M, Gaub HE, Lipfert J. Designed anchoring geometries determine lifetimes of biotin-streptavidin bonds under constant load and enable ultra-stable coupling. NANOSCALE 2020; 12:21131-21137. [PMID: 33079117 DOI: 10.1039/d0nr03665j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The small molecule biotin and the homotetrameric protein streptavidin (SA) form a stable and robust complex that plays a pivotal role in many biotechnological and medical applications. In particular, the SA-biotin linkage is frequently used in single-molecule force spectroscopy (SMFS) experiments. Recent data suggest that SA-biotin bonds show strong directional dependence and a broad range of multi-exponential lifetimes under load. Here, we investigate engineered SA variants with different valencies and a unique tethering point under constant forces using a magnetic tweezers assay. We observed orders-of-magnitude differences in the lifetimes under force, which we attribute to the distinct force-loading geometries in the different SA variants. Lifetimes showed exponential dependencies on force, with extrapolated lifetimes at zero force that are similar for the different SA variants and agree with parameters determined from constant-speed dynamic SMFS experiments. We identified an especially long-lived tethering geometry that will facilitate ultra-stable SMFS experiments.
Collapse
Affiliation(s)
- Sophia Gruber
- Department of Physics and Center for NanoScience, LMU Munich, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Shou K, Sarter M, de Souza NR, de Campo L, Whitten AE, Kuchel PW, Garvey CJ, Stadler AM. Effect of red blood cell shape changes on haemoglobin interactions and dynamics: a neutron scattering study. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201507. [PMID: 33204483 PMCID: PMC7657910 DOI: 10.1098/rsos.201507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
By using a combination of experimental neutron scattering techniques, it is possible to obtain a statistical perspective on red blood cell (RBC) shape in suspensions, and the inter-relationship with protein interactions and dynamics inside the confinement of the cell membrane. In this study, we examined the ultrastructure of RBC and protein-protein interactions of haemoglobin (Hb) in them using ultra-small-angle neutron scattering and small-angle neutron scattering (SANS). In addition, we used the neutron backscattering method to access Hb motion on the ns time scale and Å length scale. Quasi-elastic neutron scattering (QENS) experiments were performed to measure diffusive motion of Hb in RBCs and in an RBC lysate. By using QENS, we probed both internal Hb dynamics and global protein diffusion, on the accessible time scale and length scale by QENS. Shape changes of RBCs and variation of intracellular Hb concentration were induced by addition of the Na+-selective ionophore monensin and the K+-selective one, valinomycin. The experimental SANS and QENS results are discussed within the framework of crowded protein solutions, where free motion of Hb is obstructed by mutual interactions.
Collapse
Affiliation(s)
- Keyun Shou
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Mona Sarter
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- I. Physikalisches Institut (IA), AG Biophysik, RWTH Aachen, Sommerfeldstrasse 14, 52074 Aachen, Germany
| | - Nicolas R. de Souza
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Liliana de Campo
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Philip W. Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher J. Garvey
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
- Biofilm—Research Center for Biointerfaces and Biomedical Science Department, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Lund Institute for Advanced Neutron and X-ray Science, Lund, Sweden
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS-1) and Institute of Biological Information Processing (IBI-8: Neutron Scattering and Biological Matter), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
18
|
Thermophoretic Micron-Scale Devices: Practical Approach and Review. ENTROPY 2020; 22:e22090950. [PMID: 33286719 PMCID: PMC7597233 DOI: 10.3390/e22090950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
In recent years, there has been increasing interest in the development of micron-scale devices utilizing thermal gradients to manipulate molecules and colloids, and to measure their thermophoretic properties quantitatively. Various devices have been realized, such as on-chip implements, micro-thermogravitational columns and other micron-scale thermophoretic cells. The advantage of the miniaturized devices lies in the reduced sample volume. Often, a direct observation of particles using various microscopic techniques is possible. On the other hand, the small dimensions lead to some technical problems, such as a precise temperature measurement on small length scale with high spatial resolution. In this review, we will focus on the "state of the art" thermophoretic micron-scale devices, covering various aspects such as generating temperature gradients, temperature measurement, and the analysis of the current micron-scale devices. We want to give researchers an orientation for their development of thermophoretic micron-scale devices for biological, chemical, analytical, and medical applications.
Collapse
|
19
|
Abstract
The complex of the small molecule biotin and the homotetrameric protein streptavidin is key to a broad range of biotechnological applications. Therefore, the behavior of this extraordinarily high-affinity interaction under mechanical force is intensively studied by single-molecule force spectroscopy. Recently, steered molecular dynamics simulations have identified a low force pathway for the dissociation of biotin from streptavidin, which involves partial unfolding of the N-terminal β-sheet structure of monovalent streptavidin's functional subunit. Based on these results, we now introduced two mutations (T18C,A33C) in the functional subunit of monovalent streptavidin to establish a switchable connection (disulfide bridge) between the first two β-strands to prevent this unfolding. In atomic force microscopy-based single-molecule force spectroscopy experiments, we observed unbinding forces of about 350 pN (at a force-loading rate of 10 nN s-1) for pulling a single biotin out of an N-terminally anchored monovalent streptavidin binding pocket - about 1.5-fold higher compared with what has been reported for N-terminal force loading of native monovalent streptavidin. Upon addition of a reducing agent, the unbinding forces dropped back to 200 pN, as the disulfide bridge was destroyed. Switching from reducing to oxidizing buffer conditions, the inverse effect was observed. Our work illustrates how the mechanics of a receptor-ligand system can be tuned by engineering the receptor protein far off the ligand-binding pocket.
Collapse
Affiliation(s)
- Leonard C Schendel
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany.
| | | | | |
Collapse
|
20
|
The European Spallation Source in a personal view for the German Colloid and Soft Matter Society. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04628-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Thermophoresis: The Case of Streptavidin and Biotin. Polymers (Basel) 2020; 12:polym12020376. [PMID: 32046223 PMCID: PMC7077373 DOI: 10.3390/polym12020376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/02/2023] Open
Abstract
Thermophoretic behavior of a free protein changes upon ligand binding and gives access to information on the binding constants. The Soret effect has also been proven to be a promising tool to gain information on the hydration layer, as the temperature dependence of the thermodiffusion behavior is sensitive to solute–solvent interactions. In this work, we perform systematic thermophoretic measurements of the protein streptavidin (STV) and of the complex STV with biotin (B) using thermal diffusion forced Rayleigh scattering (TDFRS). Our experiments show that the temperature sensitivity of the Soret coefficient is reduced for the complex compared to the free protein. We discuss our data in comparison with recent quasi-elastic neutron scattering (QENS) measurements. As the QENS measurement has been performed in heavy water, we perform additional measurements in water/heavy water mixtures. Finally, we also elucidate the challenges arising from the quantiative thermophoretic study of complex multicomponent systems such as protein solutions.
Collapse
|