1
|
Roy B, Hridya VM, Mukherjee A. Memory Effects Explain the Fractional Viscosity Dependence of Rates Associated with Internal Friction: Simple Models and Applications to Butane Dihedral Rotation. J Phys Chem B 2024; 128:10615-10624. [PMID: 39436350 DOI: 10.1021/acs.jpcb.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Barrier-crossing rates of biophysical processes, ranging from simple conformational changes to protein folding, often deviate from the Kramers prediction of an inverse viscosity dependence. In many recent studies, this has been attributed to the presence of internal friction within the system. Previously, we showed that memory-dependent friction arising from the nonequilibrium solvation of a single particle crossing a smooth one-dimensional barrier can also cause such a deviation and be misinterpreted as internal friction. Here we introduce a simple diatom model and show that even in the absence of explicit solvent, internal memory effects arise due to coupling of the reaction coordinate motion with frictionally orthogonal degrees of freedom. This results in a fractional viscosity dependence and a deviation from Kramers' theory, typically attributed to the presence of internal friction. This model therefore mimics several biological processes where a local conformational change of a biomolecule is often influenced by its surroundings. This gives rise to an apparent "internal friction" commonly measured in terms of empirical fitting parameters α and σ. We propose a microscopic measure of this internal friction using Grote-Hynes theory which employs memory-dependent friction. We use butane to demonstrate the effect of coupling strength on the internal friction in realistic systems. This model therefore can serve the purpose of understanding internal friction in biological systems in terms of such coupling.
Collapse
Affiliation(s)
- Bikirna Roy
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - V M Hridya
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
2
|
Zhou J, Wang X, Jia M, He X, Pan H, Chen J. Ultrafast spectroscopy study of DNA photophysics after proflavine intercalation. J Chem Phys 2024; 160:124305. [PMID: 38526107 DOI: 10.1063/5.0194608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Proflavine (PF), an acridine DNA intercalating agent, has been widespread applied as an anti-microbial and topical antiseptic agent due to its ability to suppress DNA replication. On the other hand, various studies show that PF intercalation to DNA can increase photogenotoxicity and has potential chances to induce carcinomas of skin appendages. However, the effects of PF intercalation on the photophysical and photochemical properties of DNA have not been sufficiently explored. In this study, the excited state dynamics of the PF intercalated d(GC)9 • d(GC)9 and d(AT)9 • d(AT)9 DNA duplex are investigated in an aqueous buffer solution. Under 267 nm excitation, we observed ultrafast charge transfer (CT) between PF and d(GC)9 • d(GC)9 duplex, generating a CT state with an order of magnitude longer lifetime compared to that of the intrinsic excited state reported for the d(GC)9 • d(GC)9 duplex. In contrast, no excited state interaction was detected between PF and d(AT)9 • d(AT)9. Nevertheless, a localized triplet state with a lifetime over 5 µs was identified in the PF-d(AT)9 • d(AT)9 duplex.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Kulkarni M, Söderhjelm P. Free-Energy Landscape and Rate Estimation of the Aromatic Ring Flips in Basic Pancreatic Trypsin Inhibitors Using Metadynamics. J Chem Theory Comput 2023; 19:6605-6618. [PMID: 37698852 PMCID: PMC10569046 DOI: 10.1021/acs.jctc.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/13/2023]
Abstract
Aromatic side chains (phenylalanine and tyrosine) of a protein flip by 180° around the Cβ-Cγ axis (χ2 dihedral of the side chain), producing two symmetry-equivalent states. The study of ring flip dynamics with nuclear magnetic resonance (NMR) experiments helps to understand local conformational fluctuations. Ring flips are categorized as slow (milliseconds and onward) or fast (nanoseconds to near milliseconds) based on timescales accessible to NMR experiments. In this study, we investigated the ability of the infrequent metadynamics approach to estimate the flip rate and discriminate between slow and fast ring flips for eight individual aromatic side chains (F4, Y10, Y21, F22, Y23, F33, Y35, and F45) of the basic pancreatic trypsin inhibitor. Well-tempered metadynamics simulations were performed to estimate the ring-flipping free-energy surfaces for all eight aromatic residues. The results indicate that χ2 as a standalone collective variable (CV) is not sufficient to obtain computationally consistent results. Inclusion of a complementary CV, such as χ1(Cα-Cβ), solved the problem for most residues and enabled us to classify fast and slow ring flips. This indicates the importance of librational motions in ring flips. Multiple pathways and mechanisms were observed for residues F4, Y10, and F22. Recrossing events were observed for residues F22 and F33, indicating a possible role of friction effects in ring flipping. The results demonstrate the successful application of infrequent metadynamics to estimate ring flip rates and identify certain limitations of the approach.
Collapse
Affiliation(s)
- Mandar Kulkarni
- Division of Biophysical Chemistry, Lund University, Chemical Center, 22100 Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Lund University, Chemical Center, 22100 Lund, Sweden
| |
Collapse
|
4
|
Wachlmayr J, Fläschner G, Pluhackova K, Sandtner W, Siligan C, Horner A. Entropic barrier of water permeation through single-file channels. Commun Chem 2023; 6:135. [PMID: 37386127 DOI: 10.1038/s42004-023-00919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Facilitated water permeation through narrow biological channels is fundamental for all forms of life. Despite its significance in health and disease as well as for biotechnological applications, the energetics of water permeation are still elusive. Gibbs free energy of activation is composed of an enthalpic and an entropic component. Whereas the enthalpic contribution is readily accessible via temperature dependent water permeability measurements, estimation of the entropic contribution requires information on the temperature dependence of the rate of water permeation. Here, we estimate, by means of accurate activation energy measurements of water permeation through Aquaporin-1 and by determining the accurate single channel permeability, the entropic barrier of water permeation through a narrow biological channel. Thereby the calculated value for [Formula: see text] = 2.01 ± 0.82 J/(mol·K) links the activation energy of 3.75 ± 0.16 kcal/mol with its efficient water conduction rate of ~1010 water molecules/second. This is a first step in understanding the energetic contributions in various biological and artificial channels exhibiting vastly different pore geometries.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Gotthold Fläschner
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Basel, Switzerland
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569, Stuttgart, Germany
| | - Walter Sandtner
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17A, 1090, Vienna, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| |
Collapse
|
5
|
Kostelansky F, Miletin M, Havlinova Z, Szotakova B, Libra A, Kucera R, Novakova V, Zimcik P. Thermal stabilisation of the short DNA duplexes by acridine-4-carboxamide derivatives. Nucleic Acids Res 2022; 50:10212-10229. [PMID: 36156152 PMCID: PMC9561273 DOI: 10.1093/nar/gkac777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
The short oligodeoxynucleotide (ODN) probes are suitable for good discrimination of point mutations. However, the probes suffer from low melting temperatures. In this work, the strategy of using acridine-4-carboxamide intercalators to improve thermal stabilisation is investigated. The study of large series of acridines revealed that optimal stabilisation is achieved upon decoration of acridine by secondary carboxamide carrying sterically not demanding basic function bound through a two-carbon linker. Two highly active intercalators were attached to short probes (13 or 18 bases; designed as a part of HFE gene) by click chemistry into positions 7 and/or 13 and proved to increase the melting temperate (Tm) of the duplex by almost 8°C for the best combination. The acridines interact with both single- and double-stranded DNAs with substantially preferred interaction for the latter. The study of interaction suggested higher affinity of the acridines toward the GC- than AT-rich sequences. Good discrimination of two point mutations was shown in practical application with HFE gene (wild type, H63D C > G and S65C A > C mutations). Acridine itself can also serve as a fluorophore and also allows discrimination of the fully matched sequences from those with point mutations in probes labelled only with acridine.
Collapse
Affiliation(s)
| | - Miroslav Miletin
- Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Zuzana Havlinova
- Generi Biotech, Machkova 587, Hradec Kralove, 500 11, Czech Republic
| | - Barbora Szotakova
- Generi Biotech, Machkova 587, Hradec Kralove, 500 11, Czech Republic
| | - Antonin Libra
- Generi Biotech, Machkova 587, Hradec Kralove, 500 11, Czech Republic
| | - Radim Kucera
- Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec Králové, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Petr Zimcik
- To whom correspondence should be addressed. Tel: +420 495067257;
| |
Collapse
|
6
|
Grepioni F, Casali L, Fiore C, Mazzei L, Sun R, Shemchuk O, Braga D. Steps towards a nature inspired inorganic crystal engineering. Dalton Trans 2022; 51:7390-7400. [PMID: 35466980 DOI: 10.1039/d2dt00834c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This Perspective outlines the results obtained at the University of Bologna by applying crystal engineering strategies to develop nature inspired organic-inorganic materials to tackle challenges in the health and environment sectors. It is shown by means of a number of examples that co-crystallization of inorganic salts, such as alkali and transition metal halides, with organic compounds, such as amino acids, urea, thiourea and quaternary ammonium salts, can be successfully used for (i) chiral resolution and conglomerate formation from racemic compounds, (ii) inhibition of soil enzyme activity in order to reduce urea decomposition and environmental pollution, and (iii) preparation of novel agents to tackle antimicrobial resistance. All materials described in this Perspective have been obtained by mechanochemical solvent-free or slurry methods and characterized by solid state techniques. The fundamental idea is that a crystal engineering approach based on the choice of intermolecular interactions (coordination and hydrogen bonds) between organic and inorganic compounds allows obtaining materials with collective properties that are different, and often very much superior to those of the separate components. It is also demonstrated that the success of this strategy depends crucially on cross-disciplinary synergistic exchange with expert scientists in the areas of bioinorganics, microbiology, and chirality application-oriented developments of these novel materials.
Collapse
Affiliation(s)
- Fabrizia Grepioni
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Lucia Casali
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Cecilia Fiore
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Renren Sun
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy. .,School of Chemical Engineering, Zhengzhou University, 450001, Zhengzou, Henan Province, The People's Republic of China
| | - Oleksii Shemchuk
- Institute of Condensed Matter and Nanosciences, UCLouvain, 1 Place Louis Pasteur, B-1348, Belgium
| | - Dario Braga
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
7
|
Pal S, Paul S. An in silico investigation of the binding modes and pathway of APTO-253 on c-KIT G-quadruplex DNA. Phys Chem Chem Phys 2021; 23:3361-3376. [PMID: 33502401 DOI: 10.1039/d0cp05210h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The stability of c-KIT G-quadruplex DNA via ligands has been a significant concern in the growing field of cancer therapy. Thus, it is very important to understand the mechanism behind the high binding affinity of the small drug molecules on the c-KIT G-quadruplex DNA. In this study, we have investigated the binding mode and pathway of the APTO-253 ligand on the c-KIT G-quadruplex DNA employing a total of 10 μs all atom molecular dynamics simulations and further 8.82 μs simulations via the umbrella sampling method using both OL15 and BSC1 latest force fields for DNA structures. From the cluster structure analysis, mainly three binding pathways i.e., top, bottom and side loop stacking modes are identified. Moreover, RMSD, RMSF and 2D-RMSD values indicate that the c-KIT G-quadruplex DNA and APTO-253 molecules are stable throughout the simulation run. Furthermore, the number of hydrogen bonds in each tetrad and the distance between the two central K+ cations confirm that the c-KIT G-quadruplex DNA maintains its conformation in the process of complex formation with the APTO-253 ligand. The binding free energies and the minimum values in the potential of mean forces suggest that the binding processes are energetically favorable. Furthermore, we have found that the bottom stacking mode is the most favorable binding mode among all the three modes for the OL15 force field. However, for the BSC1 force field, both the top and bottom binding modes of the APTO-253 ligand in c-KIT G-quadruplex DNA are comparable to each other. To investigate the driving force for the complex formation, we have noticed that the van der Waals (vdW) and π-π stacking interactions are mainly responsible. Our detailed studies provide useful information for the discovery of novel drugs in the field of stabilization of G-quadruplex DNAs.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | | |
Collapse
|
8
|
Fiore C, Shemchuk O, Grepioni F, Turner RJ, Braga D. Proflavine and zinc chloride “team chemistry”: combining antibacterial agents via solid-state interaction. CrystEngComm 2021. [DOI: 10.1039/d1ce00612f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanochemical and solution reaction of ZnCl2 with proflavine yields the antimicrobials [HPF]2[ZnCl4]·H2O and ZnCl3(HPF), more active, with respect to the separate components and the AgNO3 standard, towards P. aeruginosa, E. coli and S. aureus.
Collapse
Affiliation(s)
- Cecilia Fiore
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Oleksii Shemchuk
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Fabrizia Grepioni
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | | | - Dario Braga
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|