1
|
Fuller L, Zhang G, Noh S, Van Lehn RC, Schreier M. Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu. Angew Chem Int Ed Engl 2024:e202421196. [PMID: 39724507 DOI: 10.1002/anie.202421196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
In this study, we employed electrochemical-mass spectrometry (EC-MS) to elucidate the role of halide anions in electrochemical CO2 and CO reduction. We found that the undesired hydrogen evolution reaction (HER) was significantly suppressed by the anion used. Specifically, the rates of H2 production decreased in the order KF > KCl > KI, meaning that I- most strongly suppressed HER. Interestingly, CO reduction products showed an inverse relationship to HER, with KI leading to the highest rate of CO reduction. By pairing our experimental findings with classical molecular dynamics simulations, we propose a mechanism wherein halide anions influence the dynamic interplay between CO reduction and HER by modulating the competition of H* and CO* for active sites on the Cu surface. We propose that this interaction is enabled by the interfacial concentration of K+ being greater in the presence of F- than in I-. Our results highlight the need to more broadly consider the properties of ions at electrocatalytic interfaces and they point to thus far underappreciated avenues to optimize hydrocarbon production while suppressing hydrogen evolution.
Collapse
Affiliation(s)
- Lee Fuller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Gong Zhang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Seonmyeong Noh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Marcel Schreier
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| |
Collapse
|
2
|
Slesinska S, Galek P, Menzel J, Donne SW, Fic K, Płatek-Mielczarek A. Fundamentals and Implication of Point of Zero Charge (PZC) Determination for Activated Carbons in Aqueous Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409162. [PMID: 39535367 DOI: 10.1002/advs.202409162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Indexed: 11/16/2024]
Abstract
The point of zero charge (PZC) is a crucial parameter for investigating the charge storage mechanisms in energy storage systems at the molecular level. This paper presents findings from three different electrochemical techniques, compared for the first time: cyclic voltammetry (CV), staircase potentio electrochemical impedance spectroscopy (SPEIS), and step potential electrochemical spectroscopy (SPECS), for two activated carbons (ACs) with 0.1 mol L-1 aqueous solution of LiNO3, Li2SO4, and KI. The charging process of AC operating in aqueous electrolytes appears as a complex phenomenon - all ionic species take an active part in electric double-layer formation and the ion-mixing zone covers a wide potential region. Therefore, the so-called PZC should not be considered as an absolute one-point potential value, but rather as a range of zero charge (RZC). SPECS technique is found to be a universal and fast method for determining RZC, as applied here together with the EQCM. In most cases, the RZC covers a potential range from ≈100 to ≈200 mV and the correlation of the range with the carbon microtexture is clear, highlighting the role of the ion-sieving effect. It is postulated that PZC for porous materials in aqueous electrolytic solutions should be considered instead as RZC.
Collapse
Affiliation(s)
- Sylwia Slesinska
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, Poznan, 60965, Poland
| | - Przemysław Galek
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, Poznan, 60965, Poland
| | - Jakub Menzel
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, Poznan, 60965, Poland
| | - Scott W Donne
- Discipline of Chemistry, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Krzysztof Fic
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, Poznan, 60965, Poland
| | - Anetta Płatek-Mielczarek
- Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, Poznan, 60965, Poland
- Laboratory for Multiphase Thermofluidics and Surface Nanoengineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Unbound Potential GmbH, Bönirainstrasse 14, Thalwil, 8800, Switzerland
| |
Collapse
|
3
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
4
|
Cui WG, Gao F, Na G, Wang X, Li Z, Yang Y, Niu Z, Qu Y, Wang D, Pan H. Insights into the pH effect on hydrogen electrocatalysis. Chem Soc Rev 2024; 53:10253-10311. [PMID: 39239864 DOI: 10.1039/d4cs00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Guoquan Na
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xingqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
5
|
Hou J, Xu B, Lu Q. Influence of electric double layer rigidity on CO adsorption and electroreduction rate. Nat Commun 2024; 15:1926. [PMID: 38431637 PMCID: PMC10908862 DOI: 10.1038/s41467-024-46318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Understanding the structure of the electric double layer (EDL) is critical for designing efficient electrocatalytic processes. However, the interplay between reactant adsorbates and the concentrated ionic species within the EDL remains an aspect that has yet to be fully explored. In the present study, we employ electrochemical CO reduction on Cu as a model reaction to reveal the significant impact of EDL structure on CO adsorption. By altering the sequence of applying negative potential and elevating CO pressure, we discern two distinct EDL structures with varying cation density and CO coverage. Our findings demonstrate that the EDL comprising densely packed cations substantially hinders CO adsorption on the Cu as opposed to the EDL containing less compact cations. These two different EDL structures remained stable over the course of our experiments, despite their identical initial and final conditions, suggesting an insurmountable kinetic barrier present in between. Moreover, we show that the size and identity of cations play decisive roles in determining the properties of the EDL in CO electroreduction on Cu. This study presents a refined adaptation of the classical Gouy-Chapman-Stern model and highlights its catalytic importance, which bridges the mechanistic gap between the EDL structure and cathodic reactions.
Collapse
Affiliation(s)
- Jiajie Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
6
|
Lucky C, Schreier M. Mind the Interface: The Role of Adsorption in Electrocatalysis. ACS NANO 2024; 18:6008-6015. [PMID: 38354360 DOI: 10.1021/acsnano.3c09523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In the field of electrocatalysis, significant emphasis has been placed on developing electrode materials to enable critical energy storage reactions and sustainable chemical synthesis. However, the electrode is just one part of a complex interfacial environment that controls substrate adsorption and reactivity. In the presence of a liquid electrolyte and an electrochemical interface, adsorption processes behave substantially differently than those in the gas phase. Understanding these adsorption processes, which play an important role in all electrocatalytic reactions, is critical for the design of effective electrocatalysts. In this Perspective, we discuss the current understanding of electrochemical adsorption and its implications for catalyst design.
Collapse
Affiliation(s)
- Christine Lucky
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Marcel Schreier
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Park J, Kim H, Kim S, Yi SY, Min H, Choi D, Lee S, Kim J, Lee J. Boosting Alkaline Hydrogen Oxidation Activity of Ru Single-Atom Through Promoting Hydroxyl Adsorption on Ru/WC 1- x Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308899. [PMID: 37910632 DOI: 10.1002/adma.202308899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Indexed: 11/03/2023]
Abstract
The sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline conditions continue to pose a significant challenge for the practical implementation of anion-exchange membrane fuel cells. Developing single-atom catalysts can accelerate the pace of new HOR catalyst discovery for highly cost-effective and active HOR performance. However, single-atom catalysts (SACs) for the alkaline HOR have rarely been reported, and fundamental studies on the rational design of SACs are still required. Herein, the design of Ru SAC supported on the tungsten carbide (Ru SA/WC1- x ) via in situ high-temperature annealing strategy is reported. The resulting Ru SA/WC1- x catalyst exhibits remarkably enhanced HOR performance in alkaline media, a level of activity that can not be achieved with carbon-supported Ru SAC. Electrochemical results and density functional theory demonstrate that promoting the hydroxyl adsorption on Ru SA/WC1- x interfaces, which is derived from the low potential of zero charge of WC1- x support, has a significant effect on enhancing the HOR performance of SACs. This enhancement leads to 5.8 and 60.1 times higher Ru mass activity of Ru SA/WC1- x than Ru nanoparticles on carbon and Ru single-atom on N-doped carbon, respectively. This work provides new insights into the design of highly active SACs for alkaline HOR.
Collapse
Affiliation(s)
- Jinkyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Honghui Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seongbeen Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hakyung Min
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Rychagov AY, Sosenkin VE, Izmailova MY, Kabachkov EN, Shulga YM, Volfkovich YM, Gutsev GL. Self-Discharge Processes in Symmetrical Supercapacitors with Activated Carbon Electrodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6415. [PMID: 37834552 PMCID: PMC10573834 DOI: 10.3390/ma16196415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
The self-discharge of an electric double-layer capacitor with composite activated carbon electrodes and aqueous electrolyte (1 M MgSO4) was studied in detail. Under a long-term potentiostatic charge (stabilization), a decrease in the discharge capacity was observed in the region of voltages exceeding 0.8 V. The self-discharge process consists of two phases. In the initial phase, the cell voltage drop is due to the charge redistribution inside electrodes. During the main phase, the charge transfer between the electrodes determines the voltage drop. The optimal stabilization time of the self-discharge was found to be 50 min at 1.4 V. Hydrophilization of the negative electrode occurred during long-term polarization due to the formation of epoxy functional groups.
Collapse
Affiliation(s)
- Alexey Yu. Rychagov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, 119071 Moscow, Russia; (A.Y.R.); (V.E.S.); (M.Y.I.); (Y.M.V.)
| | - Valentin E. Sosenkin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, 119071 Moscow, Russia; (A.Y.R.); (V.E.S.); (M.Y.I.); (Y.M.V.)
| | - Marianna Yu. Izmailova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, 119071 Moscow, Russia; (A.Y.R.); (V.E.S.); (M.Y.I.); (Y.M.V.)
| | - Evgeny N. Kabachkov
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia; (E.N.K.); (Y.M.S.)
| | - Yury M. Shulga
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia; (E.N.K.); (Y.M.S.)
| | - Yury M. Volfkovich
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, 119071 Moscow, Russia; (A.Y.R.); (V.E.S.); (M.Y.I.); (Y.M.V.)
| | - Gennady L. Gutsev
- Department of Physics, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
9
|
Sahu PS, Verma RP, Dabhade AH, Tewari C, Sahoo NG, Saha B. A novel, efficient and economical alternative for the removal of toxic organic, inorganic and pathogenic water pollutants using GO-modified PU granular composite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121201. [PMID: 36738883 DOI: 10.1016/j.envpol.2023.121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 05/09/2023]
Abstract
Multicomponent wastewater treatment utilising simple and cost-effective materials and methods is an important research topic. This study has reported the fabrication and utilisation of graphene oxide (GO) embedded granular Polyurethane (PU) (GOPU) adsorbent for the treatment of lead ion (Lead ion (Pb(II)), Methylene blue (MB), and E. coli. PU granules were wrapped with GO flakes to improve hydrophilicity, interaction with polluted water, cation-exchange reaction, and binding of pollutants on its surface. Synthesised GOPU granules were characterised by X-Ray Diffraction (XRD), Raman, Fourier transform infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) analysis to ensure the successful synthesis of GO and fabrication of GOPU granules. Further, batch and continuous adsorption processes were studied in different operating conditions to evaluate the performance of GOPU granules in practical applications. The kinetic and isotherm analyses revealed that the adsorption of Lead (Pb(II)) ion and Methylene Blue (MB) dye followed the Freundlich and Langmuir isotherm models, respectively, and they showed good agreement with the Pseudo-second-order kinetic model. The adsorption capacities of GOPU granules for the elimination of Pb(II) and MB dye were about 842 mg/g and 899 mg/g, respectively. Additionally, investigations into the fixed bed column revealed that the adsorption column performed best at a flow rate of 5 mL/min and a bed height of 6 cm. Pb(II) adsorption had a bed uptake capacity (qbed) of 88 mg/g and percentage removal efficiency (%R) of 76%. Similarly, MB adsorption had a bed uptake capacity of 202 mg/g and a percentage removal efficiency of 71%. A systematic invention on antibacterial activity toward E. coli showed that The GOPU granules have a removal efficiency of about 100% at an exposure of 24 h. These findings indicated the possible use of GOPU granules as promising adsorbents for various water pollutants.
Collapse
Affiliation(s)
- Prateekshya Suman Sahu
- Department of Chemical Engineering, National Institute of Technology Rourkela, (NIT Rourkela) Sector 1, Rourkela, Odisha, 768009, India
| | - Ravi Prakash Verma
- Department of Chemical Engineering, National Institute of Technology Rourkela, (NIT Rourkela) Sector 1, Rourkela, Odisha, 768009, India
| | - Ajinkya Hariram Dabhade
- Department of Chemical Engineering, National Institute of Technology Rourkela, (NIT Rourkela) Sector 1, Rourkela, Odisha, 768009, India
| | - Chetna Tewari
- PRS-Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, 263001, Uttarakhand, India
| | - Nanda Gopal Sahoo
- PRS-Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, 263001, Uttarakhand, India
| | - Biswajit Saha
- Department of Chemical Engineering, National Institute of Technology Rourkela, (NIT Rourkela) Sector 1, Rourkela, Odisha, 768009, India; Indian Institute of Technology Gandhinagar, (IIT Gandhinagar), Palaj, Gujarat, 382355, India.
| |
Collapse
|
10
|
Baldaguez Medina P, Ardila Contreras V, Hartmann F, Schmitt D, Klimek A, Elbert J, Gallei M, Su X. Investigating the Electrochemically Driven Capture and Release of Long-Chain PFAS by Redox Metallopolymer Sorbents. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22112-22122. [PMID: 37114898 DOI: 10.1021/acsami.3c01670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The remediation of perfluoroalkyl substances (PFAS) is an urgent challenge due to their prevalence and persistence in the environment. Electrosorption is a promising approach for wastewater treatment and water purification, especially through the use of redox polymers to control the binding and release of target contaminants without additional external chemical inputs. However, the design of efficient redox electrosorbents for PFAS faces the significant challenge of balancing a high adsorption capacity while maintaining significant electrochemical regeneration. To overcome this challenge, we investigate redox-active metallopolymers as a versatile synthetic platform to enhance both electrochemical reversibility and electrosorption uptake capacity for PFAS removal. We selected and synthesized a series of metallopolymers bearing ferrocene and cobaltocenium units spanning a range of redox potentials to evaluate their performance for the capture and release of perfluorooctanoic acid (PFOA). Our results demonstrate that PFOA uptake and regeneration efficiency increased with more negative formal potential of the redox polymers, indicating possible structural correlations with the electron density of the metallocenes. Poly(2-(methacryloyloxy)ethyl cobaltoceniumcarboxylate hexafluorophosphate) (PMAECoPF6) showed the highest affinity toward PFOA, with an uptake capacity of more than 90 mg PFOA/g adsorbent at 0.0 V vs Ag/AgCl and a regeneration efficiency of more than 85% at -0.4 V vs Ag/AgCl. Kinetics of PFOA release showed that electrochemical bias greatly enhanced the regeneration efficiency when compared to open-circuit desorption. In addition, electrosorption of PFAS from different wastewater matrices and a range of salt concentrations demonstrated the capability of PFAS remediation in complex water sources, even at ppb levels of contaminants. Our work showcases the synthetic tunability of redox metallopolymers for enhanced electrosorption capacity and regeneration of PFAS.
Collapse
Affiliation(s)
- Paola Baldaguez Medina
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Valentina Ardila Contreras
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Frank Hartmann
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Deborah Schmitt
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
| | - Angelique Klimek
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Elbert
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Markus Gallei
- Chair in Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
12
|
Pastor E, Montañés L, Gutiérrez-Blanco A, Hegner FS, Mesa CA, López N, Giménez S. The role of crystal facets and disorder on photo-electrosynthesis. NANOSCALE 2022; 14:15596-15606. [PMID: 36148901 DOI: 10.1039/d2nr03609f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photoelectrochemistry has the potential to play a crucial role in the storage of solar energy and the realisation of a circular economy. From a chemical viewpoint, achieving high conversion efficiencies requires subtle control of the catalyst surface and its interaction with the electrolyte. Traditionally, such control has been hard to achieve in the complex multinary oxides used in PEC devices and consequently the mechanisms by which surface exposed facets influence light-driven catalysts are poorly understood. Yet, this understanding is critical to further improve conversion yields and fine-tune reaction selectivities. Here, we review the impact that crystal facets and disorder have on photoelectrochemical reactivity. In particular, we discuss how the crystal orientation influences the energetics of the surface, the existence of defects and the transport of reactive charges, ultimately dictating the PEC activity. Moreover, we evaluate how facet stability dictates the tendency of the solid to undergo reconstructions during catalytic processes and highlight the experimental and computational challenges that must be overcome to characterise the role of the exposed facets and disorder in catalytic performance.
Collapse
Affiliation(s)
- Ernest Pastor
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n 12006, Castelló, Spain.
| | - Laura Montañés
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n 12006, Castelló, Spain.
| | - Ana Gutiérrez-Blanco
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n 12006, Castelló, Spain.
| | - Franziska S Hegner
- Technical University of Munich, Department of Physics, James-Franck-Str. 1, 85748 Garching, Germany
| | - Camilo A Mesa
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n 12006, Castelló, Spain.
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.
| | - Sixto Giménez
- Institute of Advanced Materials (INAM), Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n 12006, Castelló, Spain.
| |
Collapse
|
13
|
Bui JC, Lees EW, Pant LM, Zenyuk IV, Bell AT, Weber AZ. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chem Rev 2022; 122:11022-11084. [PMID: 35507321 DOI: 10.1021/acs.chemrev.1c00901] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrochemical synthesis possesses substantial promise to utilize renewable energy sources to power the conversion of abundant feedstocks to value-added commodity chemicals and fuels. Of the potential system architectures for these processes, only systems employing 3-D structured porous electrodes have the capacity to achieve the high rates of conversion necessary for industrial scale. However, the phenomena and environments in these systems are not well understood and are challenging to probe experimentally. Fortunately, continuum modeling is well-suited to rationalize the observed behavior in electrochemical synthesis, as well as to ultimately provide recommendations for guiding the design of next-generation devices and components. In this review, we begin by presenting an historical review of modeling of porous electrode systems, with the aim of showing how past knowledge of macroscale modeling can contribute to the rising challenge of electrochemical synthesis. We then present a detailed overview of the governing physics and assumptions required to simulate porous electrode systems for electrochemical synthesis. Leveraging the developed understanding of porous-electrode theory, we survey and discuss the present literature reports on simulating multiscale phenomena in porous electrodes in order to demonstrate their relevance to understanding and improving the performance of devices for electrochemical synthesis. Lastly, we provide our perspectives regarding future directions in the development of models that can most accurately describe and predict the performance of such devices and discuss the best potential applications of future models.
Collapse
Affiliation(s)
- Justin C Bui
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eric W Lees
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biological Engineering, University of British Columbia Vancouver, British Columbia V6T 1Z3, Canada
| | - Lalit M Pant
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Sustainable Energy Engineering, Indian Institute of Technology, Kanpur, Kanpur-208016, India
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam Z Weber
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Xu A, Govindarajan N, Kastlunger G, Vijay S, Chan K. Theories for Electrolyte Effects in CO 2 Electroreduction. Acc Chem Res 2022; 55:495-503. [PMID: 35107967 DOI: 10.1021/acs.accounts.1c00679] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrochemical CO2 reduction (eCO2R) enables the conversion of waste CO2 to high-value fuels and commodity chemicals powered by renewable electricity, thereby offering a viable strategy for reaching the goal of net-zero carbon emissions. Research in the past few decades has focused both on the optimization of the catalyst (electrode) and the electrolyte environment. Surface-area normalized current densities show that the latter can affect the CO2 reduction activity by up to a few orders of magnitude.In this Account, we review theories of the mechanisms behind the effects of the electrolyte (cations, anions, and the electrolyte pH) on eCO2R. As summarized in the conspectus graphic, the electrolyte influences eCO2R activity via a field (ε) effect on dipolar (μ) reaction intermediates, changing the proton donor for the multi-step proton-electron transfer reaction, specifically adsorbed anions on the catalyst surface to block active sites, and tuning the local environment by homogeneous reactions. To be specific, alkali metal cations (M+) can stabilize reaction intermediates via electrostatic interactions with dipolar intermediates or buffer the interfacial pH via hydrolysis reactions, thereby promoting the eCO2R activity with the following trend in hydrated size (corresponding to the local field strength ε)/hydrolysis ability: Cs+ > K+ > Na+ > Li+. The effect of the electrolyte pH can give a change in eCO2R activity of up to several orders of magnitude, arising from linearly shifting the absolute interfacial field via the relationship USHE = URHE - (2.3kBT)pH, homogeneous reactions between OH- and desorbed intermediates, or changing the proton donor from hydronium to water along with increasing pH. Anions have been suggested to affect the eCO2R reaction process by solution-phase reactions (e.g., buffer reactions to tune local pH), acting as proton donors or as a surface poison.So far, the existing models of electrolyte effects have been used to rationalize various experimentally observed trends, having yet to demonstrate general predictive capabilities. The major challenges in our understanding of the electrolyte effect in eCO2R are (i) the long time scale associated with a dynamic ab initio picture of the catalyst|electrolyte interface and (ii) the overall activity determined by the length-scale interplay of intrinsic microkinetics, homogeneous reactions, and mass transport limitations. New developments in ab initio dynamic models and coupling the effects of mass transport can provide a more accurate view of the structure and intrinsic functions of the electrode-electrolyte interface and the corresponding reaction energetics toward comprehensive and predictive models for electrolyte design.
Collapse
Affiliation(s)
- Aoni Xu
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Sudarshan Vijay
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Ding X, Scieszka D, Watzele S, Xue S, Garlyyev B, Haid RW, Bandarenka AS. A Systematic Study of the Influence of Electrolyte Ions on the Electrode Activity. ChemElectroChem 2022. [DOI: 10.1002/celc.202101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Ding
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Daniel Scieszka
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Sebastian Watzele
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Song Xue
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Richard W. Haid
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
- Catalysis Research Center TUM Technical University of Munich Ernst-Otto-Fischer-Strasse 1 85748 Garching Germany
| |
Collapse
|
16
|
Ding X, Sarpey TK, Hou S, Garlyyev B, Li W, Fischer RA, Bandarenka A. Prospects of Using the Laser‐Induced Temperature Jump Techniques for Characterisation of Electrochemical Systems. ChemElectroChem 2021. [DOI: 10.1002/celc.202101175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xing Ding
- Technical University Munich: Technische Universitat Munchen Physics GERMANY
| | | | - Shujin Hou
- Technische Universität München: Technische Universitat Munchen Physics GERMANY
| | - Batyr Garlyyev
- Technical University Munich: Technische Universitat Munchen Physics GERMANY
| | - Weijin Li
- Technical University Munich: Technische Universitat Munchen Chemistry GERMANY
| | - Roland A. Fischer
- Technische Universität München: Technische Universitat Munchen Chemistry GERMANY
| | - Aliaksandr Bandarenka
- Technische Universitat Munchen Physik-Department James-Franck-Str. 1 85748 Garching GERMANY
| |
Collapse
|
17
|
Cu(111) single crystal electrodes: Modifying interfacial properties to tailor electrocatalysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Schuett FM, Zeller SJ, Eckl MJ, Matzik FM, Heubach MK, Geng T, Hermann JM, Uhl M, Kibler LA, Engstfeld AK, Jacob T. Versatile 3D-Printed Micro-Reference Electrodes for Aqueous and Non-Aqueous Solutions. Angew Chem Int Ed Engl 2021; 60:22783-22790. [PMID: 34427031 PMCID: PMC8518549 DOI: 10.1002/anie.202105871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/18/2021] [Indexed: 11/09/2022]
Abstract
While numerous reference electrodes suitable for aqueous electrolytes exist, there is no well-defined standard for non-aqueous electrolytes. Furthermore, reference electrodes are often large and do not meet the size requirements for small cells. In this work, we present a simple method for fabricating stable 3D-printed micro-reference electrodes. The prints are made from polyvinylidene fluoride, which is chemically inert in strong acids, bases, and commonly used non-aqueous solvents. We chose six different reference systems based on Ag, Cu, Zn, and Na, including three aqueous and three non-aqueous systems to demonstrate the versatility of the approach. Subsequently, we conducted cyclic voltammetry experiments and measured the potential difference between the aqueous homemade reference electrodes and a commercial Ag/AgCl-electrode. For the non-aqueous reference electrodes, we chose the ferrocene redox couple as an internal standard. From these measurements, we deduced that this new class of micro-reference electrodes is leak-tight and shows a stable electrode potential.
Collapse
Affiliation(s)
- Fabian M Schuett
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Sven J Zeller
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Helmholtz-Institute-Ulm (HIU), Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Maximilian J Eckl
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Felix M Matzik
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Maren-Kathrin Heubach
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Tanja Geng
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Johannes M Hermann
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Matthias Uhl
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Ludwig A Kibler
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Albert K Engstfeld
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Helmholtz-Institute-Ulm (HIU), Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
19
|
Schuett FM, Zeller SJ, Eckl MJ, Matzik FM, Heubach M, Geng T, Hermann JM, Uhl M, Kibler LA, Engstfeld AK, Jacob T. Versatile 3D‐Printed Micro‐Reference Electrodes for Aqueous and Non‐Aqueous Solutions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian M. Schuett
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Sven J. Zeller
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany
| | - Maximilian J. Eckl
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Felix M. Matzik
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Maren‐Kathrin Heubach
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Tanja Geng
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Johannes M. Hermann
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Matthias Uhl
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Ludwig A. Kibler
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Albert K. Engstfeld
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Timo Jacob
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany
| |
Collapse
|
20
|
Watzele SA, Katzenmeier L, Sabawa JP, Garlyyev B, Bandarenka AS. Temperature dependences of the double layer capacitance of some solid/liquid and solid/solid electrified interfaces. An experimental study. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Surface characterization of copper electrocatalysts by lead underpotential deposition. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Auer A, Sarabia FJ, Winkler D, Griesser C, Climent V, Feliu JM, Kunze-Liebhäuser J. Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH) 2-Modified Cu(111). ACS Catal 2021; 11:10324-10332. [PMID: 34476113 PMCID: PMC8383263 DOI: 10.1021/acscatal.1c02673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Indexed: 11/29/2022]
Abstract
![]()
The hydrogen evolution
reaction (HER) has been crucial for the
development of fundamental knowledge on electrocatalysis and electrochemistry,
in general. In alkaline media, many key questions concerning pH-dependent
structure–activity relations and the underlying activity descriptors
remain unclear. While the presence of Ni(OH)2 deposited
on Pt(111) has been shown to highly improve the rate of the HER through
the electrode’s bifunctionality, no studies exist on how low
coverages of Ni(OH)2 influence the electrocatalytic behavior
of Cu surfaces, which is a low-cost alternative to Pt. Here, we demonstrate
that Cu(111) modified with 0.1 and 0.2 monolayers (ML) of Ni(OH)2 exhibits an unusual non-linear activity trend with increasing
coverage. By combining in situ structural investigations
with studies on the interfacial water orientation using electrochemical
scanning tunneling microscopy and laser-induced temperature jump experiments,
we find a correlation between a particular threshold of surface roughness
and the decrease in the ordering of the water network at the interface.
The highly disordered water ad-layer close to the onset of the HER,
which is only present for 0.2 ML of Ni(OH)2, facilitates
the reorganization of the interfacial water molecules to accommodate
for charge transfer, thus enhancing the rate of the reaction. These
findings strongly suggest a general validity of the interfacial water
reorganization as an activity descriptor for the HER in alkaline media.
Collapse
Affiliation(s)
- Andrea Auer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Francisco J. Sarabia
- Instituto Universitario de Electroquímica, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| | - Daniel Winkler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Christoph Griesser
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Víctor Climent
- Instituto Universitario de Electroquímica, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| | - Juan M. Feliu
- Instituto Universitario de Electroquímica, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| | - Julia Kunze-Liebhäuser
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| |
Collapse
|
23
|
Li XY, Chen A, Yang XH, Zhu JX, Le JB, Cheng J. Linear Correlation between Water Adsorption Energies and Volta Potential Differences for Metal/water Interfaces. J Phys Chem Lett 2021; 12:7299-7304. [PMID: 34319117 DOI: 10.1021/acs.jpclett.1c02001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potential of zero charge (PZC) is an important reference for understanding the interface charge and structure at a given potential, and its difference from the work function of metal surface (ΦM) is defined as the Volta potential difference (ΔΦ). In this work, we model 11 metal/water interfaces with ab initio molecular dynamics. Interestingly, we find ΔΦ is linearly correlated with the adsorption energy of water (Eads) on the metal surface. It is revealed that the size of Eads directly determines the coverage of chemisorbed water on the metal surface and accordingly affects the interface potential change caused by electron redistribution (ΔΦel). Moreover, ΔΦ is dominated by the electronic component ΔΦel with little orientational dipole contributing, which explains the linear correlation between ΔΦ and Eads. Finally, it is expected that this correlation can be helpful for effectively estimating the ΔΦel and PZC of other metal surfaces in the future work.
Collapse
Affiliation(s)
- Xiang-Ying Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Hui Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Xin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Bo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|