1
|
Botha JL, van Heerden B, Krüger TPJ. Advanced analysis of single-molecule spectroscopic data. BIOPHYSICAL REPORTS 2024; 4:100173. [PMID: 39097230 PMCID: PMC11374972 DOI: 10.1016/j.bpr.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
We present Full SMS, a multipurpose graphical user interface (GUI)-based software package for analyzing single-molecule spectroscopy (SMS) data. SMS typically delivers multiparameter data-such as fluorescence brightness, lifetime, and spectra-of molecular- or nanometer-scale particles such as single dye molecules, quantum dots, or fluorescently labeled biological macromolecules. Full SMS allows an unbiased statistical analysis of fluorescence brightness through level resolution and clustering, analysis of fluorescence lifetimes through decay fitting, as well as the calculation of second-order correlation functions and the display of fluorescence spectra and raster-scan images. Additional features include extensive data filtering options, a custom HDF5-based file format, and flexible data export options. The software is open source and written in Python but GUI based so it may be used without any programming knowledge. A multiprocess architecture was employed for computational efficiency. The software is also designed to be easily extendable to include additional import data types and analysis capabilities.
Collapse
Affiliation(s)
- Joshua L Botha
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Bertus van Heerden
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa; Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa; National Institute of Theoretical and Computational Sciences (NITheCS), South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa; Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa; National Institute of Theoretical and Computational Sciences (NITheCS), South Africa.
| |
Collapse
|
2
|
Singha PK, Mukhopadhyay T, Tarif E, Ali F, Datta A. Competition among recombination pathways in single FAPbBr3 nanocrystals. J Chem Phys 2024; 161:054704. [PMID: 39087543 DOI: 10.1063/5.0205940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Single particle level microscopy of immobilized FAPbBr3 nanocrystals (NCs) has elucidated the involvement of different processes in their photoluminescence (PL) intermittency. Four different blinking patterns are observed in the data from more than 100 NCs. The dependence of PL decays on PL intensities brought out in fluorescence lifetime intensity distribution (FLID) plots is rationalized by the interplay of exciton- and trion-mediated recombinations along with hot carrier (HC) trapping. The high intensity-long lifetime component is attributed to neutral exciton recombination, the low intensity-short lifetime component is attributed to trion assisted recombination, and the low intensity-long lifetime component is attributed to hot carrier recombination. Change-point analysis (CPA) of the PL blinking data reveals the involvement of multiple intermediate states. Truncated power law distribution is found to be more appropriate than power law and lognormal distribution for on and off events. Probability distributions of PL trajectories of single NCs are obtained for two different excitation fluences and wavelengths (λex = 400, 440 nm). Trapping rate (kT) prevails at higher power densities for both excitation wavelengths. From a careful analysis of the FLID and probability distributions, it is concluded that there is competition between the HC and trion assisted blinking pathways and that the contribution of these mechanisms varies with excitation wavelength as well as fluence.
Collapse
Affiliation(s)
- Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tamoghna Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ejaj Tarif
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Fariyad Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Gallagher S, Kline J, Jahanbakhshi F, Sadighian JC, Lyons I, Shen G, Hammel BF, Yazdi S, Dukovic G, Rappe AM, Ginger DS. Ligand Equilibrium Influences Photoluminescence Blinking in CsPbBr 3: A Change Point Analysis of Widefield Imaging Data. ACS NANO 2024; 18:19208-19219. [PMID: 38982590 DOI: 10.1021/acsnano.4c04968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Photoluminescence intermittency remains one of the biggest challenges in realizing perovskite quantum dots (QDs) as scalable single photon emitters. We compare CsPbBr3 QDs capped with different ligands, lecithin, and a combination of oleic acid and oleylamine, to elucidate the role of surface chemistry on photoluminescence intermittency. We employ widefield photoluminescence microscopy to sample the blinking behavior of hundreds of QDs. Using change point analysis, we achieve the robust classification of blinking trajectories, and we analyze representative distributions from large numbers of QDs (Nlecithin = 1308, Noleic acid/oleylamine = 1317). We find that lecithin suppresses blinking in CsPbBr3 QDs compared with oleic acid/oleylamine. Under common experimental conditions, lecithin-capped QDs are 7.5 times more likely to be nonblinking and spend 2.5 times longer in their most emissive state, despite both QDs having nearly identical solution photoluminescence quantum yields. We measure photoluminescence as a function of dilution and show that the differences between lecithin and oleic acid/oleylamine capping emerge at low concentrations during preparation for single particle experiments. From experiment and first-principles calculations, we attribute the differences in lecithin and oleic acid/oleylamine performance to differences in their ligand binding equilibria. Consistent with our experimental data, density functional theory calculations suggest a stronger binding affinity of lecithin to the QD surface compared to oleic acid/oleylamine, implying a reduced likelihood of ligand desorption during dilution. These results suggest that using more tightly binding ligands is a necessity for surface passivation and, consequently, blinking reduction in perovskite QDs used for single particle and quantum light experiments.
Collapse
Affiliation(s)
- Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Kline
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Farzaneh Jahanbakhshi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James C Sadighian
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ian Lyons
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gillian Shen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin F Hammel
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Sadegh Yazdi
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Gordana Dukovic
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Boehme S, Bodnarchuk MI, Burian M, Bertolotti F, Cherniukh I, Bernasconi C, Zhu C, Erni R, Amenitsch H, Naumenko D, Andrusiv H, Semkiv N, John RA, Baldwin A, Galkowski K, Masciocchi N, Stranks SD, Rainò G, Guagliardi A, Kovalenko MV. Strongly Confined CsPbBr 3 Quantum Dots as Quantum Emitters and Building Blocks for Rhombic Superlattices. ACS NANO 2023; 17:2089-2100. [PMID: 36719353 PMCID: PMC9933619 DOI: 10.1021/acsnano.2c07677] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The success of the colloidal semiconductor quantum dots (QDs) field is rooted in the precise synthetic control of QD size, shape, and composition, enabling electronically well-defined functional nanomaterials that foster fundamental science and motivate diverse fields of applications. While the exploitation of the strong confinement regime has been driving commercial and scientific interest in InP or CdSe QDs, such a regime has still not been thoroughly explored and exploited for lead-halide perovskite QDs, mainly due to a so far insufficient chemical stability and size monodispersity of perovskite QDs smaller than about 7 nm. Here, we demonstrate chemically stable strongly confined 5 nm CsPbBr3 colloidal QDs via a postsynthetic treatment employing didodecyldimethylammonium bromide ligands. The achieved high size monodispersity (7.5% ± 2.0%) and shape-uniformity enables the self-assembly of QD superlattices with exceptional long-range order, uniform thickness, an unusual rhombic packing with an obtuse angle of 104°, and narrow-band cyan emission. The enhanced chemical stability indicates the promise of strongly confined perovskite QDs for solution-processed single-photon sources, with single QDs showcasing a high single-photon purity of 73% and minimal blinking (78% "on" fraction), both at room temperature.
Collapse
Affiliation(s)
- Simon
C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Max Burian
- Swiss
Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Federica Bertolotti
- Department
of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Caterina Bernasconi
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron
Microscopy Center, Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Denys Naumenko
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Hordii Andrusiv
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Nazar Semkiv
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Rohit Abraham John
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Alan Baldwin
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Krzysztof Galkowski
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Norberto Masciocchi
- Department
of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Antonietta Guagliardi
- Istituto
di Cristallografia and To.Sca.Lab, Consiglio
Nazionale delle Ricerche, via Valleggio 11, 22100 Como, Italy
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
5
|
Alfieri A, Anantharaman SB, Zhang H, Jariwala D. Nanomaterials for Quantum Information Science and Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109621. [PMID: 35139247 DOI: 10.1002/adma.202109621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
Collapse
Affiliation(s)
- Adam Alfieri
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Surendra B Anantharaman
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Palstra I, Koenderink AF. A Python Toolbox for Unbiased Statistical Analysis of Fluorescence Intermittency of Multilevel Emitters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:12050-12060. [PMID: 34276862 PMCID: PMC8282189 DOI: 10.1021/acs.jpcc.1c01670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/05/2021] [Indexed: 06/13/2023]
Abstract
We report on a Python toolbox for unbiased statistical analysis of fluorescence intermittency properties of single emitters. Intermittency, that is, step-wise temporal variations in the instantaneous emission intensity and fluorescence decay rate properties, is common to organic fluorophores, II-VI quantum dots, and perovskite quantum dots alike. Unbiased statistical analysis of intermittency switching time distributions, involved levels, and lifetimes are important to avoid interpretation artifacts. This work provides an implementation of Bayesian changepoint analysis and level clustering applicable to time-tagged single-photon detection data of single emitters that can be applied to real experimental data and as a tool to verify the ramifications of hypothesized mechanistic intermittency models. We provide a detailed Monte Carlo analysis to illustrate these statistics tools and to benchmark the extent to which conclusions can be drawn on the photophysics of highly complex systems, such as perovskite quantum dots that switch between a plethora of states instead of just two.
Collapse
Affiliation(s)
- Isabelle
M. Palstra
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - A. Femius Koenderink
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|