1
|
Ahmad I, Al-Qattan A, Iqbal MZ, Anas A, Khasawneh MA, Obaidullah AJ, Mahal A, Duan M, Al Zoubi W, Ghadi YY, Al-Zaqri N, Xia C. A systematic review on Nb 2O 5-based photocatalysts: Crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Adv Colloid Interface Sci 2024; 324:103093. [PMID: 38306848 DOI: 10.1016/j.cis.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
With the increasing popularity of photocatalytic technology and the highly growing issues of energy scarcity and environmental pollution, there is an increasing interest in extremely efficient photocatalytic systems. The widespread immense attention and applicability of Nb2O5 photocatalysts can be attributed to their multiple benefits, including strong redox potentials, non-toxicity, earth abundance, corrosion resistance, and efficient thermal and chemical stability. However, the large-scale application of Nb2O5 is currently impeded by the barriers of rapid recombination loss of photo-activated electron/hole pairs and the inadequacy of visible light absorption. To overcome these constraints, plentiful design strategies have been directed at modulating the morphology, electronic band structure, and optical properties of Nb2O5. The current review offers an extensive analysis of Nb2O5-based photocatalysts, with a particular emphasis on crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Finally, an outline of future research directions and challenges in developing Nb2O5-based materials with excellent photocatalytic performance is presented.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Physics, University of Agriculture-38040, Faisalabad, Pakistan
| | - Ayman Al-Qattan
- Energy and Building Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | | | - Alkhouri Anas
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 15551, United Arab Emirates.
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Meitao Duan
- School of Pharmacy, Xiamen Medical College, People's Republic of China
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yazeed Yasin Ghadi
- Department of Computer Science and Software Engineering, Al Ain University, United Arab Emirates
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
2
|
Wolski L, Sobańska K, Nowaczyk G, Frankowski M, Pietrowski M, Jarek M, Rozmyślak M, Pietrzyk P. Phosphate doping as a promising approach to improve reactivity of Nb 2O 5 in catalytic activation of hydrogen peroxide and removal of methylene blue via adsorption and oxidative degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129783. [PMID: 36027741 DOI: 10.1016/j.jhazmat.2022.129783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
This study is devoted to the evaluation of the influence of phosphate dopants on the reactivity of Nb2O5-based nanomaterials in the combined catalytic activation of H2O2 and the elimination of methylene blue (MB) from an aqueous solution via adsorption and chemical degradation. For this purpose, several niobia-based catalysts doped with various amounts of phosphate were prepared by a facile hydrothermal method and subsequent calcination. Phosphate doping was shown to strongly enhance the ability of Nb2O5 to activate H2O2, as well as to adsorb and degrade MB. The most pronounced differences in the reactivity of the parent Nb2O5 and phosphate-doped samples were observed under strongly acidic conditions (pH ~ 2.4), at which the most active modified catalysts (Nb/P molar ratio = 5/1) was approximately 6 times more efficient in the removal of MB. The observed enhancement of reactivity was attributed to the increased generation of singlet oxygen 1O2, which was identified as the main oxidizing agent responsible for efficient degradation of MB. To our knowledge, it is the first report revealing that phosphate doping of Nb2O5 resulted in an improved activity of niobia in the adsorption and degradation of organic pollutants.
Collapse
Affiliation(s)
- Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Kamila Sobańska
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, ul. Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Mariusz Pietrowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, ul. Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Mateusz Rozmyślak
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Piotr Pietrzyk
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|