1
|
Pileni MP. "Nano-egg" superstructures of hydrophobic nanocrystals dispersed in water. Phys Chem Chem Phys 2024; 26:16931-16941. [PMID: 38835199 DOI: 10.1039/d4cp01299b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In this feature article, we use hydrophobic ferrite (Fe3O4) nanocrystal shells filled with Au nanocrystals self-assembled into 3D superlattices and dispersed in water. These superstructures act as nano-heaters. The stability of such superstructures is very high, even for several years, when stored at room temperature. When subjected to an electron beam, the inverted structure of Fe3O4 structures is gradually dissolved due to the formation of hydrated electrons and hydroxyl radicals.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université, Department of Chemistry, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
2
|
Fernandes J, Kang S. Thermal dynamics of gold nanoshell dimers under femtosecond laser pulse irradiation: A numerical approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3773. [PMID: 37723125 DOI: 10.1002/cnm.3773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
We present a numerical investigation of the photothermal response of gold nanoshell (AuNS) dimers when subjected to femtosecond laser pulse irradiation. The time-varying temperature fields for core-shell AuNS dimers are quantified by implementing finite element modeling, integrating the electromagnetic and thermal dual-physics simulations. Given the ultrafast nature of laser pulses, we employ a two-temperature model to accurately portray the energy transfer from excited electrons to the lattice system, a process typically completed post pulse-termination. The temporal analysis of the temperature in the AuNS and the surrounding medium, together with the spatial temperature distribution under different separation distances, elucidates the processes that drive the AuNS dimers' transient temperature distribution and heat dissipation. We report on the critical effects of geometrical parameters on the photothermal response, demonstrating that thinner shells maximize the total deposited energy per unit volume, resulting in increased temperature fields, while decreasing separation distances result in excessive field amplification due to plasmonic modes' production. Our robust numerical approach, enabling simulations with tunable material properties and configurations, may help design nanomaterials with desired features for photothermal cancer treatment and imaging.
Collapse
Affiliation(s)
- Joshua Fernandes
- Department of Mechanical Engineering, Dong-A University, Busan, Republic of Korea
| | - Sangmo Kang
- Department of Mechanical Engineering, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
3
|
Pileni MP. Superstructures of water-dispersive hydrophobic nanocrystals: specific properties. MATERIALS HORIZONS 2023; 10:4746-4756. [PMID: 37740284 DOI: 10.1039/d3mh00949a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Here, we describe water-soluble superstructures of hydrophobic nanocrystals that have been developed in recent years. We will also report on some of their properties which are still in their infancy. One of these structures, called "cluster structures", consists of hydrophobic 3D superlattices of Co or Au nanocrystals, covered with organic molecules acting like parachutes. The magnetic properties of Co "cluster structures" a retained when the superstructures is dispersed in aqueous solution. With Au "cluster structures", the longer wavelength optical scattered spectra are very broad and red-shifted, while at shorter wavelengths the localized surface plasmonic resonance of the scattered nanocrystals is retained. Moreover, the maximum of the long-wavelength signal spectra is linearly dependent on the increase in assembly size. The second superstructure was based on liquid-liquid instabilities favoring the formation of Fe3O4 nanocrystal shells (colloidosomes) filled or unfilled with Au 3D superlattices and also spherical solid crystal structures are called supraballs. Colloidosomes and supraballs in contact with cancer cells increase the density of nanocrystals in lysosomes and near the lysosomal membrane. Importantly, the structure of their organization is maintained in lysosomes for up to 8 days after internalization, while the initially dispersed hydrophilic nanocrystals are randomly aggregated. These two structures act as nanoheaters. Indeed, due to the dilution of the metallic phase, the penetration depth of visible light is much greater than that of homogeneous metallic nanoparticles of similar size. This allows for a high average heat load overall. Thus, the organic matrix acts as an internal reservoir for efficient energy accumulation within a few hundred picoseconds. A similar behavior was observed with colloidosomes, supraballs and "egg" structures, making these superstructures universal nanoheaters, and the same behavior is not observed when they are not dispersed in water (dried and deposited on a substrate). Note that colloidosomes and supraballs trigger local photothermal damage inaccessible to isolated nanocrystals and not predicted by global temperature measurements.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université département de chimie, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
4
|
Chen N, Wang Y, Deng Z. DNA-Condensed Plasmonic Supraballs Transparent to Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14053-14062. [PMID: 37725679 DOI: 10.1021/acs.langmuir.3c01860] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
DNA nanotechnology offers an unrivaled programmability of plasmonic nanoassemblies based on encodable Watson-Crick basepairing. However, it is very challenging to build rigidified three-dimensional supracolloidal assemblies with strong electromagnetic coupling and a self-confined exterior shape. We herein report an alternative strategy based on a DNA condensation reaction to make such structures. Using DNA-grafted gold nanoparticles as building blocks and metal ions with suitable phosphate affinities as abiological DNA-bonding agents, a seedless growth of spheroidal supraparticles is realized via metal-ion-induced DNA condensation. Some governing rules are disclosed in this process, including kinetic and thermodynamic effects stemming from electrostatic and coordinative forces with different interaction ranges. The supraballs are tailorable by adjusting the volumetric ratio between DNA grafts and gold cores and by overgrowing extra gold layers toward tunable plasmon coupling. Various appealing and highly desirable properties are achieved for the resulting metaballs, including (i) chemical reversibility and fixation ability, (ii) stability against denaturant, salt, and molecular adsorbates, (iii) enriched and continuously tunable plasmonic hotspots, (iv) permeability to small guest molecules and antifoulingness against protein contaminates, and (v) Raman-enhancing and photocatalytic activities. Innovative applications are thus foreseeable for this emerging class of meta-assemblies in contrast to what is achieved by DNA-basepaired ones.
Collapse
Affiliation(s)
- Nuo Chen
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueliang Wang
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Harder P, İyisan N, Wang C, Kohler F, Neb I, Lahm H, Dreßen M, Krane M, Dietz H, Özkale B. A Laser-Driven Microrobot for Thermal Stimulation of Single Cells. Adv Healthc Mater 2023; 12:e2300904. [PMID: 37229536 PMCID: PMC11468149 DOI: 10.1002/adhm.202300904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Here, the study presents a thermally activated cell-signal imaging (TACSI) microrobot, capable of photothermal actuation, sensing, and light-driven locomotion. The plasmonic soft microrobot is specifically designed for thermal stimulation of mammalian cells to investigate cell behavior under heat active conditions. Due to the integrated thermosensitive fluorescence probe, Rhodamine B, the system allows dynamic measurement of induced temperature changes. TACSI microrobots show excellent biocompatibility over 72 h in vitro, and they are capable of thermally activating single cells to cell clusters. Locomotion in a 3D workspace is achieved by relying on thermophoretic convection, and the microrobot speed is controlled within a range of 5-65 µm s-1 . In addition, light-driven actuation enables spatiotemporal control of the microrobot temperature up to a maximum of 60 °C. Using TACSI microrobots, this study targets single cells within a large population, and demonstrates thermal cell stimulation using calcium signaling as a biological output. Initial studies with human embryonic kidney 293 cells indicate a dose dependent change in intracellular calcium content within the photothermally controlled temperature range of 37-57 °C.
Collapse
Affiliation(s)
- Philipp Harder
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Fabian Kohler
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Irina Neb
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Harald Lahm
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Martina Dreßen
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Markus Krane
- Division of Cardiac Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Hendrik Dietz
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
6
|
Chen Y, Bai Y, Wang X, Zhang H, Zheng H, Gu N. Plasmonic/magnetic nanoarchitectures: From controllable design to biosensing and bioelectronic interfaces. Biosens Bioelectron 2023; 219:114744. [PMID: 36327555 DOI: 10.1016/j.bios.2022.114744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 02/08/2023]
Abstract
Controllable design of the nanocrystal-assembled plasmonic/magnetic nanoarchitectures (P/MNAs) inspires abundant methodologies to enhance light-matter interactions and control magnetic-induced effects by means of fine-tuning the morphology and ordered packing of noble metallic or magnetic building blocks. The burgeoning development of multifunctional nanoarchitectures has opened up broad range of interdisciplinary applications including biosensing, in vitro diagnostic devices, point-of-care (POC) platforms, and soft bioelectronics. By taking advantage of their customizability and efficient conjugation with capping biomolecules, various nanoarchitectures have been integrated into high-performance biosensors with remarkable sensitivity and versatility, enabling key features that combined multiplexed detection, ease-of-use and miniaturization. In this review, we provide an overview of the representative developments of nanoarchitectures that being built by plasmonic and magnetic nanoparticles over recent decades. The design principles and key mechanisms for signal amplification and quantitative sensitivity have been explored. We highlight the structure-function programmability and prospects of addressing the main limitations for conventional biosensing strategies in terms of accurate selectivity, sensitivity, throughput, and optoelectronic integration. State-of-the-art strategies to achieve affordable and field-deployable POC devices for early multiplexed detection of infectious diseases such as COVID-19 has been covered in this review. Finally, we discuss the urgent yet challenging issues in nanoarchitectures design and related biosensing application, such as large-scale fabrication and integration with portable devices, and provide perspectives and suggestions on developing smart biosensors that connecting the materials science and biomedical engineering for personal health monitoring.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China.
| | - Yu Bai
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China
| | - Xi Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China
| | - Heng Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China
| | - Haoran Zheng
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215123, China.
| |
Collapse
|