1
|
Fiorani A, Santo CI, Sakanoue K, Calabria D, Mirasoli M, Paolucci F, Valenti G, Einaga Y. Electrogenerated chemiluminescence from luminol-labelled microbeads triggered by in situ generation of hydrogen peroxide. Anal Bioanal Chem 2024; 416:7277-7283. [PMID: 38834789 DOI: 10.1007/s00216-024-05356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
We developed a sensing strategy that mimics the bead-based electrogenerated chemiluminescence immunoassay. However, instead of the most common metal complexes, such as Ru or Ir, the luminophore is luminol. The electrogenerated chemiluminescence of luminol was promoted by in situ electrochemical generation of hydrogen peroxide at a boron-doped diamond electrode. The electrochemical production of hydrogen peroxide was achieved in a carbonate solution by an oxidation reaction, while at the same time, microbeads labelled with luminol were deposited on the electrode surface. For the first time, we proved that was possible to obtain light emission from luminol without its direct oxidation at the electrode. This new emission mechanism is obtained at higher potentials than the usual luminol electrogenerated chemiluminescence at 0.3-0.5 V, in conjunction with hydrogen peroxide production on boron-doped diamond at around 2-2.5 V (vs Ag/AgCl).
Collapse
Affiliation(s)
- Andrea Fiorani
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| | - Claudio Ignazio Santo
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Kohei Sakanoue
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Donato Calabria
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
2
|
Máčala J, Makhneva E, Hlaváček A, Kopecký M, Gorris HH, Skládal P, Farka Z. Upconversion Nanoparticle-Based Dot-Blot Immunoassay for Quantitative Biomarker Detection. Anal Chem 2024; 96:10237-10245. [PMID: 38870418 PMCID: PMC11209662 DOI: 10.1021/acs.analchem.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Dot-blot immunoassays are widely used for the user-friendly detection of clinical biomarkers. However, the majority of dot-blot assays have only limited sensitivity and are only used for qualitative or semiquantitative analysis. To overcome this limitation, we have employed labels based on photon-upconversion nanoparticles (UCNPs) that exhibit anti-Stokes luminescence and can be detected without optical background interference. First, the dot-blot immunoassay on a nitrocellulose membrane was optimized for the quantitative analysis of human serum albumin (HSA), resulting in a limit of detection (LOD) of 0.19 ng/mL and a signal-to-background ratio (S/B) of 722. Commercial quantum dots were used as a reference label, reaching the LOD of 4.32 ng/mL and the S/B of 3, clearly indicating the advantages of UCNPs. In addition, the potential of UCNP-based dot-blot for real sample analysis was confirmed by analyzing spiked urine samples, reaching the LOD of 0.24 ng/mL and recovery rates from 79 to 123%. Furthermore, we demonstrated the versatility and robustness of the assay by adapting it to the detection of two other clinically relevant biomarkers, prostate-specific antigen (PSA) and cardiac troponin (cTn), reaching the LODs in spiked serum of 9.4 pg/mL and 0.62 ng/mL for PSA and cTn, respectively. Finally, clinical samples of patients examined for prostate cancer were analyzed, achieving a strong correlation with the reference electrochemiluminescence immunoassay (recovery rates from 89 to 117%). The achieved results demonstrate that UCNPs are highly sensitive labels that enable the development of dot-blot immunoassays for quantitative analysis of low-abundance biomarkers.
Collapse
Affiliation(s)
- Jakub Máčala
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ekaterina Makhneva
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Antonín Hlaváček
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Martin Kopecký
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hans H. Gorris
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Farka
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Hu J, Su X, Yuan L, Zheng K, Zou X, Sun Z, Xu X, Zhang W. Competitive immunoassay using enzyme-regulated Fe 3O 4@COF/Fe 3+ fluorescence probe for natural chloramphenicol detection. Anal Chim Acta 2023; 1277:341680. [PMID: 37604605 DOI: 10.1016/j.aca.2023.341680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023]
Abstract
Accurate and sensitive detection of chloramphenicol (CAP) in natural samples is essential for ensuring human health. Herein, an enzyme-regulated fluorescence sensor using Fe3O4@COF/Fe3+ probe, is developed for CAP determination. Fe3O4@COF, synthesized via hydrothermal method, exhibits dual functions as a magnetic carrier and signal probe. Bovine serum albumin conjugated-chloramphenicol, adsorbed on the surface of Fe3O4@COF, competes with CAP for antibody binding. The antibody interacts with alkaline phosphatase via the biotin-streptavidin system. Meanwhile, ascorbic acid, produced from the enzyme-catalyzed reaction dominated by alkaline phosphatase, effectively restores the fluorescence of Fe3O4@COF that is quenched by Fe3+. After experimental verification and gradual optimization, a logarithmic linear relationship between CAP concentration and fluorescence intensity is established in the range of 2 × 10-4∼10 μg mL-1, with a good limit of detection (9.2 × 10-5 μg mL-1). Proposed method exhibits excellent stability (15 days) and reusability (8 cycles), providing a sensitive and reliable method for accurate CAP detection. The readouts show good agreement with HPLC and recoveries during laboratory and natural CAP analysis.
Collapse
Affiliation(s)
- Jutao Hu
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyu Su
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kaiyi Zheng
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
4
|
Rodriguez-Quijada C, Lyons C, Sanchez-Purra M, Santamaria C, Leonardo BM, Quinn S, Tlusty MF, Shiaris M, Hamad-Schifferli K. Gold Nanoparticle Paper Immunoassays for Sensing the Presence of Vibrio parahaemolyticus in Oyster Hemolymph. ACS OMEGA 2023; 8:19494-19502. [PMID: 37305279 PMCID: PMC10249105 DOI: 10.1021/acsomega.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023]
Abstract
Seafood contamination with Vibrio bacteria is a problem for aquaculture, especially with oysters, which are often consumed raw. Current methods for diagnosing bacterial pathogens in seafood involve lab-based assays such as polymerase chain reaction or culturing, which are time consuming and must occur in a centralized location. Detection of Vibrio in a point-of-care assay would be a significant tool for food safety control measures. We report here a paper immunoassay that can detect the presence of Vibrio parahaemolyticus (Vp) in buffer and oyster hemolymph. The test uses gold nanoparticles conjugated to polyclonal anti-Vibrio antibodies in a paper-based sandwich immunoassay. A sample is added to the strip and wicked through by capillary action. If Vp is present, it results in a visible color at the test area that can be read out by eyes or a standard mobile phone camera. The assay has a limit of detection of 6.05 × 105 cfu/mL and a cost estimate of $5 per test. Receiver operating characteristic curves with validated environmental samples showed a test sensitivity of 0.96 and a specificity of 1.00. Because the assay is inexpensive and can be used on Vp directly without the requirement for culturing, or sophisticated equipment, it has the potential to be used in fieldable settings.
Collapse
Affiliation(s)
- Cristina Rodriguez-Quijada
- Department
of Engineering, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Casandra Lyons
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Maria Sanchez-Purra
- Department
of Engineering, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Charles Santamaria
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Brianna M. Leonardo
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Sara Quinn
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
| | - Michael F. Tlusty
- School
for the Environment, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125 United States
| | - Michael Shiaris
- Department
of Biology, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
- School
for the Environment, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125 United States
| | - Kimberly Hamad-Schifferli
- Department
of Engineering, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125, United States
- School
for the Environment, University of Massachusetts
Boston, 100 Morrissey Blvd., Boston, Massachusetts 02125 United States
| |
Collapse
|