1
|
Braga A, Armengol-Profitós M, Pascua-Solé L, Vendrell X, Soler L, Serrano I, Villar-Garcia IJ, Pérez-Dieste V, Divins NJ, Llorca J. Bimetallic NiFe Nanoparticles Supported on CeO 2 as Catalysts for Methane Steam Reforming. ACS APPLIED NANO MATERIALS 2023; 6:7173-7185. [PMID: 37205295 PMCID: PMC10186329 DOI: 10.1021/acsanm.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
Ni-Fe nanocatalysts supported on CeO2 have been prepared for the catalysis of methane steam reforming (MSR) aiming for coke-resistant noble metal-free catalysts. The catalysts have been synthesized by traditional incipient wetness impregnation as well as dry ball milling, a green and more sustainable preparation method. The impact of the synthesis method on the catalytic performance and the catalysts' nanostructure has been investigated. The influence of Fe addition has been addressed as well. The reducibility and the electronic and crystalline structure of Ni and Ni-Fe mono- and bimetallic catalysts have been characterized by temperature programmed reduction (H2-TPR), in situ synchrotron X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Their catalytic activity was tested between 700 and 950 °C at 108 L gcat-1 h-1 and with the reactant flow varying between 54 and 415 L gcat-1 h-1 at 700 °C. Hydrogen production rates of 67 mol gmet-1 h-1 have been achieved. The performance of the ball-milled Fe0.1Ni0.9/CeO2 catalyst was similar to that of Ni/CeO2 at high temperatures, but Raman spectroscopy revealed a higher amount of highly defective carbon on the surface of Ni-Fe nanocatalysts. The reorganization of the surface under MSR of the ball-milled NiFe/CeO2 has been monitored by in situ near-ambient pressure XPS experiments, where a strong reorganization of the Ni-Fe nanoparticles with segregation of Fe toward the surface has been observed. Despite the catalytic activity being lower in the low-temperature regime, Fe addition for the milled nanocatalyst increased the coke resistance and could be an efficient alternative to industrial Ni/Al2O3 catalysts.
Collapse
Affiliation(s)
- Andrea Braga
- Institute
of Energy Technologies, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Marina Armengol-Profitós
- Institute
of Energy Technologies, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Laia Pascua-Solé
- Institute
of Energy Technologies, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Xavier Vendrell
- Institute
of Energy Technologies, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Lluís Soler
- Institute
of Energy Technologies, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Isabel Serrano
- Institute
of Energy Technologies, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ignacio J. Villar-Garcia
- ALBA
Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès Barcelona, Spain
| | - Virginia Pérez-Dieste
- ALBA
Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès Barcelona, Spain
| | - Núria J. Divins
- Institute
of Energy Technologies, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Llorca
- Institute
of Energy Technologies, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
3
|
Chen Z, Li J, Meng L, Li J, Hao Y, Jiang T, Yang X, Li Y, Liu ZP, Gong M. Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organic oxidation with enzyme-like activities. Nat Commun 2023; 14:1184. [PMID: 36864050 PMCID: PMC9981682 DOI: 10.1038/s41467-023-36830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Simultaneously achieving abundant and well-defined active sites with high selectivity has been one of the ultimate goals for heterogeneous catalysis. Herein, we construct a class of Ni hydroxychloride-based inorganic-organic hybrid electrocatalysts with the inorganic Ni hydroxychloride chains pillared by the bidentate N-N ligands. The precise evacuation of N-N ligands under ultrahigh-vacuum forms ligand vacancies while partially retaining some ligands as structural pillars. The high density of ligand vacancies forms the active vacancy channel with abundant and highly-accessible undercoordinated Ni sites, exhibiting 5-25 fold and 20-400 fold activity enhancement compared to the hybrid pre-catalyst and standard β-Ni(OH)2 for the electrochemical oxidation of 25 different organic substrates, respectively. The tunable N-N ligand can also tailor the sizes of the vacancy channels to significantly impact the substrate configuration leading to unprecedented substrate-dependent reactivities on hydroxide/oxide catalysts. This approach bridges heterogenous and homogeneous catalysis for creating efficient and functional catalysis with enzyme-like properties.
Collapse
Affiliation(s)
- Zhe Chen
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jili Li
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Lingshen Meng
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jianan Li
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yaming Hao
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Tao Jiang
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Xuejing Yang
- grid.28056.390000 0001 2163 4895National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237 China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Zhi-Pan Liu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Garza RB, Lee J, Nguyen MH, Garmon A, Perez D, Li M, Yang JC, Henkelman G, Saidi WA. Atomistic Mechanisms of Binary Alloy Surface Segregation from Nanoseconds to Seconds Using Accelerated Dynamics. J Chem Theory Comput 2022; 18:4447-4455. [PMID: 35671511 DOI: 10.1021/acs.jctc.2c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the equilibrium composition of many alloy surfaces is well understood, the rate of transient surface segregation during annealing is not known, despite its crucial effect on alloy corrosion and catalytic reactions occurring on overlapping timescales. In this work, CuNi bimetallic alloys representing (100) surface facets are annealed in vacuum using atomistic simulations to observe the effect of vacancy diffusion on surface separation. We employ multi-timescale methods to sample the early transient, intermediate, and equilibrium states of slab surfaces during the separation process, including standard MD as well as three methods to perform atomistic, long-time dynamics: parallel trajectory splicing (ParSplice), adaptive kinetic Monte Carlo (AKMC), and kinetic Monte Carlo (KMC). From nanosecond (ns) to second timescales, our multiscale computational methodology can observe rare stochastic events not typically seen with standard MD, closing the gap between computational and experimental timescales for surface segregation. Rapid diffusion of a vacancy to the slab is resolved by all four methods in tens of nanoseconds. Stochastic re-entry of vacancies into the subsurface, however, is only seen on the microsecond timescale in the two KMC methods. Kinetic vacancy trapping on the surface and its effect on the segregation rate are discussed. The equilibrium composition profile of CuNi after segregation during annealing is estimated to occur on a timescale of seconds as determined by KMC, a result directly comparable to nanoscale experiments.
Collapse
Affiliation(s)
- Richard B Garza
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiyoung Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering & Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mai H Nguyen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Garmon
- Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Department of Physics & Astronomy, Clemson University, Clemson, South Carolina 29631, United States
| | - Danny Perez
- Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Meng Li
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Graeme Henkelman
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering & Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Gatin AK, Grishin MV, Prostnev AS, Sarvady SY, Stepanov IG, Kharitonov VA, Shub BR. Interaction of Carbon Monoxide with a Nano-Structured Copper-Nickel Coating on Graphite in the Presence of an Electric Field. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tan WJ, Ban ZH, Chen BH, Kim KS, Siwayanan P, Choong TSY, Lau KK. Enhanced Mitigation of Fire and Explosion Risks due to Hydrogen Leakage Using Targeted Nitrogen Nozzle Spray Approach. ACS CHEMICAL HEALTH & SAFETY 2022. [DOI: 10.1021/acs.chas.1c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Jian Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
| | - Zhen Hong Ban
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Bing-Hui Chen
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Kek Seong Kim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Parthiban Siwayanan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Thomas S. Y. Choong
- Faculty of Engineering, Universiti Putra Malaysia, Seri Kembangan, Selangor 43400, Malaysia
| | - Kok Keong Lau
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia
| |
Collapse
|
7
|
Schlögl R. Chemische Batterien mit CO
2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202007397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Robert Schlögl
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| |
Collapse
|
8
|
Abstract
Efforts to obtain raw materials from CO2 by catalytic reduction as a means of combating greenhouse gas emissions are pushing the boundaries of the chemical industry. The dimensions of modern energy regimes, on the one hand, and the necessary transport and trade of globally produced renewable energy, on the other, will require the use of chemical batteries in conjunction with the local production of renewable electricity. The synthesis of methanol is an important option for chemical batteries and will, for that reason, be described here in detail. It is also shown that the necessary, robust, and fundamental understanding of processes and the material science of catalysts for the hydrogenation of CO2 does not yet exist.
Collapse
Affiliation(s)
- Robert Schlögl
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| |
Collapse
|
9
|
Liu S, Yang C, Zha S, Sharapa D, Studt F, Zhao Z, Gong J. Moderate Surface Segregation Promotes Selective Ethanol Production in CO
2
Hydrogenation Reaction over CoCu Catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sihang Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
- Present address: Catalysis Theory Center Department of Physics Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| | - Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Shenjun Zha
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dmitry Sharapa
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 18 76131 Karlsruhe Germany
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Weijin Road 92 Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
10
|
Liu S, Yang C, Zha S, Sharapa D, Studt F, Zhao ZJ, Gong J. Moderate Surface Segregation Promotes Selective Ethanol Production in CO 2 Hydrogenation Reaction over CoCu Catalysts. Angew Chem Int Ed Engl 2021; 61:e202109027. [PMID: 34676955 DOI: 10.1002/anie.202109027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/29/2021] [Indexed: 11/06/2022]
Abstract
Cobalt-copper (CoCu) catalysts have industrial potential in CO/CO2 hydrogenation reactions, and CoCu alloy has been elucidated as a major active phase during reactions. However, due to elemental surface segregation and dealloying phenomena, the actual surface morphology of CoCu alloy is still unclear. Combining theory and experiment, the dual effect of surface segregation and varied CO coverage over the CoCu(111) surface on the reactivity in CO2 hydrogenation reactions is explored. The relationship between C-O bond scission and further hydrogenation of intermediate *CH2 O was discovered to be a key step to promote ethanol production. The theoretical investigation suggests that moderate Co segregation provides a suitable surface Co ensemble with lateral interactions of co-adsorbed *CO, leading to promoted selectivity to ethanol, in agreement with theory-inspired experiments.
Collapse
Affiliation(s)
- Sihang Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Present address: Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs., Lyngby, Denmark
| | - Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Shenjun Zha
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dmitry Sharapa
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76131, Karlsruhe, Germany
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
11
|
Zhang Y, Lyu Z, Chen Z, Zhu S, Shi Y, Chen R, Xie M, Yao Y, Chi M, Shao M, Xia Y. Maximizing the Catalytic Performance of Pd@Au x Pd 1-x Nanocubes in H 2 O 2 Production by Reducing Shell Thickness to Increase Compositional Stability. Angew Chem Int Ed Engl 2021; 60:19643-19647. [PMID: 34128305 DOI: 10.1002/anie.202105137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/13/2021] [Indexed: 11/06/2022]
Abstract
We report a simple route based upon seed-mediated growth to the synthesis of Pd@Aux Pd1-x (0.8≤x≤1) core-shell nanocubes. Benefiting from the well-defined {100} facets and an optimal Au/Pd ratio for the surface, the nanocubes bearing a shell made of Au0.95 Pd0.05 work as an efficient electrocatalyst toward H2 O2 production, with high selectivity of 93-100 % in the low-overpotential region of 0.4-0.7 V. When the Au0.95 Pd0.05 alloy is confined to a shell of only three atomic layers in thickness, the electrocatalyst is able to maintain its surface structure and elemental composition, endowing continuous and stable production of H2 O2 during oxygen reduction at a high rate of 1.62 mol g(Pd+Au) -1 h-1 . This work demonstrates a versatile route to the rational development of active and durable electrocatalysts based upon alloy nanocrystals.
Collapse
Affiliation(s)
- Yu Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zitao Chen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yifeng Shi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yao Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Miaofang Chi
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering, Guangdong Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
12
|
Zhang Y, Lyu Z, Chen Z, Zhu S, Shi Y, Chen R, Xie M, Yao Y, Chi M, Shao M, Xia Y. Maximizing the Catalytic Performance of Pd@Au
x
Pd
1−
x
Nanocubes in H
2
O
2
Production by Reducing Shell Thickness to Increase Compositional Stability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu Zhang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Zitao Chen
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Yifeng Shi
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Ruhui Chen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Minghao Xie
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Yao Yao
- Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Miaofang Chi
- Center for Nanophase Materials Science Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Minhua Shao
- Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
- Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering, Guangdong Laboratory The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
13
|
Kim J, Choi H, Kim D, Park JY. Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeongjin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hanseul Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Meng J, Zhu B, Gao Y. Structure reconstruction of metal/alloy in reaction conditions: a volcano curve? Faraday Discuss 2021; 229:62-74. [PMID: 33634798 DOI: 10.1039/c9fd00128j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent in situ works have shown extensive evidence of the dramatic and reversible structure reconstructions of metal and alloy materials in reaction conditions. The reconstructions are of primary interest because they could lead to alternative catalytic mechanisms during real reactions. However, how the catalyst structure evolves under the pressures relevant to industrial applications (>1 atm) is so far unexplored. In our recent works, we have developed multiscale theoretical models to give reliable and precise predictions of the equilibrium shapes of metal nanoparticles and of the segregation properties of alloy surfaces at a given temperature and gas pressure. The theoretical predictions have been successfully used in interoperations of various in situ experimental observations. In this work, we applied these methods to study the detailed structural information of metal NPs and of bimetallic alloys at the temperature from 300 to 1000 K and the gas pressure from 10 to 107 Pa. The results show, in some cases, both the gas-induced shape change and the gas-induced segregation change are maximized when the gas adsorption is 'just right'. The fraction of the low-coordinated sites of the metal NP shows a volcano-like curve with pressure at a constant temperature. A similar volcano shape could also be found in the plot of the environmental segregation energy as functions of temperature and pressure. The similar gas effects at low pressure and at high pressure indicate the structural information obtained in laboratory environments (<1 atm) could be of use to understanding the catalysts structure reconstruction in industrial conditions (>1 atm).
Collapse
Affiliation(s)
- Jun Meng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beien Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Yi Gao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| |
Collapse
|
15
|
Pielsticker L, Zegkinoglou I, Han ZK, Navarro JJ, Kunze S, Karslıoğlu O, Levchenko SV, Roldan Cuenya B. Crystallographic Orientation Dependence of Surface Segregation and Alloying on PdCu Catalysts for CO 2 Hydrogenation. J Phys Chem Lett 2021; 12:2570-2575. [PMID: 33686857 PMCID: PMC7983046 DOI: 10.1021/acs.jpclett.1c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The influence of the crystallographic orientation on surface segregation and alloy formation in model PdCu methanol synthesis catalysts was investigated in situ using near-ambient pressure X-ray photoelectron spectroscopy under CO2 hydrogenation conditions. Combined with scanning tunneling microscopy and density functional theory calculations, the study showed that submonolayers of Pd undergo spontaneous alloy formation on Cu(110) and Cu(100) surfaces in vacuum, whereas they do not form an alloy on Cu(111). Upon heating in H2, inward diffusion of Pd into the Cu lattice is favored, facilitating alloying on all Cu surfaces. Under CO2 hydrogenation reaction conditions, the alloying trend becomes stronger, promoted by the reaction intermediate HCOO*, especially on Pd/Cu(110). This work demonstrates that surface alloying may be a key factor in the enhancement of the catalytic activity of PdCu catalysts as compared to their monometallic counterparts. Furthermore, it sheds light on the hydrogen activation mechanism during catalytic hydrogenation on copper-based catalysts.
Collapse
Affiliation(s)
- Lukas Pielsticker
- Faculty
of Physics and Astronomy, Ruhr University
Bochum, 44780 Bochum, Germany
| | - Ioannis Zegkinoglou
- Faculty
of Physics and Astronomy, Ruhr University
Bochum, 44780 Bochum, Germany
| | - Zhong-Kang Han
- Center
for Energy Science and Technology, Skolkovo
Institute of Science and Technology, Moscow 121205, Russia
| | - Juan J. Navarro
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, Berlin 14195, Germany
| | - Sebastian Kunze
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, Berlin 14195, Germany
| | - Osman Karslıoğlu
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, Berlin 14195, Germany
| | - Sergey V. Levchenko
- Center
for Energy Science and Technology, Skolkovo
Institute of Science and Technology, Moscow 121205, Russia
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, Berlin 14195, Germany
| |
Collapse
|
16
|
Copper Phyllosilicates-Derived Catalysts in the Production of Alcohols from Hydrogenation of Carboxylates, Carboxylic Acids, Carbonates, Formyls, and CO2: A Review. Catalysts 2021. [DOI: 10.3390/catal11020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Copper phyllosilicates-derived catalysts (CuPS-cats) have been intensively explored in the past two decades due to their promising activity in carbonyls hydrogenation. However, CuPS-cats have not been completely reviewed. This paper focuses on the aspects concerning CuPS-cats from synthesis methods, effects of preparation conditions, and dopant to catalytic applications of CuPS-cats. The applications of CuPS-cats include the hydrogenation of carboxylates, carboxylic acids, carbonates, formyls, and CO2 to their respective alcohols. Besides, important factors such as the Cu dispersion, Cu+ and Cu0 surface areas, particles size, interaction between Cu and supports and dopants, morphologies, and spatial effect on catalytic performance of CuPS-cats are discussed. The deactivation and remedial actions to improve the stability of CuPS-cats are summarized. It ends up with the challenges and prospective by using this type of catalyst.
Collapse
|
17
|
Ferraz CP, Kiméné A, Silva Vargas K, Heyte S, Durlin C, Simon O, Dumeignil F, Paul S, Wojcieszak R. Efficient non-noble Ni–Cu based catalysts for the valorization of palmitic acid through a decarboxylation reaction. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02161j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synergistic effect Ni–Cu in the bimetallic catalyst Ni–Cu/C improved the stability and reduction temperature as well as enhanced the catalytic activity for the decarboxylation of palmitic acid.
Collapse
Affiliation(s)
- Camila P. Ferraz
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | - Anouchka Kiméné
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | - Karen Silva Vargas
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | - Svetlana Heyte
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | | | | | - Franck Dumeignil
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | - Sébastien Paul
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | - Robert Wojcieszak
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| |
Collapse
|
18
|
Kunze S, Grosse P, Bernal Lopez M, Sinev I, Zegkinoglou I, Mistry H, Timoshenko J, Hu MY, Zhao J, Alp EE, Chee SW, Roldan Cuenya B. Operando NRIXS and XAFS Investigation of Segregation Phenomena in Fe‐Cu and Fe‐Ag Nanoparticle Catalysts during CO
2
Electroreduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sebastian Kunze
- Department of Physics Ruhr-University Bochum 44780 Bochum Germany
- Department of Interface Science Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Philipp Grosse
- Department of Physics Ruhr-University Bochum 44780 Bochum Germany
- Department of Interface Science Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | | | - Ilya Sinev
- Department of Physics Ruhr-University Bochum 44780 Bochum Germany
| | | | - Hemma Mistry
- Department of Physics Ruhr-University Bochum 44780 Bochum Germany
| | - Janis Timoshenko
- Department of Interface Science Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Michael Y. Hu
- Advanced Photon Source Argonne National Laboratory Chicago USA
| | - Jiyong Zhao
- Advanced Photon Source Argonne National Laboratory Chicago USA
| | - Ercan E. Alp
- Advanced Photon Source Argonne National Laboratory Chicago USA
| | - See Wee Chee
- Department of Interface Science Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science Fritz-Haber Institute of the Max Planck Society 14195 Berlin Germany
| |
Collapse
|
19
|
Kunze S, Grosse P, Bernal Lopez M, Sinev I, Zegkinoglou I, Mistry H, Timoshenko J, Hu MY, Zhao J, Alp EE, Chee SW, Roldan Cuenya B. Operando NRIXS and XAFS Investigation of Segregation Phenomena in Fe-Cu and Fe-Ag Nanoparticle Catalysts during CO 2 Electroreduction. Angew Chem Int Ed Engl 2020; 59:22667-22674. [PMID: 32833290 PMCID: PMC7756314 DOI: 10.1002/anie.202010535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Indexed: 11/12/2022]
Abstract
Operando nuclear resonant inelastic X‐ray scattering (NRIXS) and X‐ray absorption fine‐structure spectroscopy (XAFS) measurements were used to gain insight into the structure and surface composition of FeCu and FeAg nanoparticles (NPs) during the electrochemical CO2 reduction (CO2RR) and to extract correlations with their catalytic activity and selectivity. The formation of a core–shell structure during CO2RR for FeAg NPs was inferred from the analysis of the operando NRIXS data (phonon density of states, PDOS) and XAFS measurements. Electrochemical analysis of the FeAg NPs revealed a faradaic selectivity of 36 % for CO in 0.1 M KHCO3 at −1.1 V vs. RHE, similar to that of pure Ag NPs. In contrast, a predominant selectivity towards H2 evolution is obtained in the case of the FeCu NPs, analogous to the results obtained for pure Fe NPs, although small Cu NPs have also been shown to favor H2 production.
Collapse
Affiliation(s)
- Sebastian Kunze
- Department of Physics, Ruhr-University Bochum, 44780, Bochum, Germany.,Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Philipp Grosse
- Department of Physics, Ruhr-University Bochum, 44780, Bochum, Germany.,Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | | | - Ilya Sinev
- Department of Physics, Ruhr-University Bochum, 44780, Bochum, Germany
| | | | - Hemma Mistry
- Department of Physics, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Chicago, USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Chicago, USA
| | - Ercan E Alp
- Advanced Photon Source, Argonne National Laboratory, Chicago, USA
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| |
Collapse
|
20
|
|
21
|
Hernández Mejía C, van der Hoeven JES, de Jongh PE, de Jong KP. Cobalt-Nickel Nanoparticles Supported on Reducible Oxides as Fischer-Tropsch Catalysts. ACS Catal 2020; 10:7343-7354. [PMID: 32655980 PMCID: PMC7340342 DOI: 10.1021/acscatal.0c00777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Indexed: 11/29/2022]
Abstract
Efficient and more sustainable production of transportation fuels is key to fulfill the ever-increasing global demand. In order to achieve this, progress in the development of highly active and selective catalysts is fundamental. The combination of bimetallic nanoparticles and reactive support materials offers unique and complex interactions that can be exploited for improved catalyst performance. Here, we report on cobalt-nickel nanoparticles on reducible metal oxides as support material for enhanced performance in the Fischer-Tropsch synthesis. For this, different cobalt to nickel ratios (Ni/(Ni + Co): 0.0, 0.25, 0.50, 0.75, or 1.0 atom/atom) supported on reducible (TiO2 and Nb2O5) or nonreducible (α-Al2O3) oxides were studied. At 1 bar, Co-Ni nanoparticles supported on TiO2 and Nb2O5 showed stable catalytic performance, high activities and remarkably high selectivities for long-chain hydrocarbons (C5+, ∼80 wt %). In contrast, catalysts supported on α-Al2O3 independently of the metal composition showed lower activities, high methane production, and considerable deactivation throughout the experiment. At 20 bar, the combination of cobalt and nickel supported on reducible oxides allowed for 25-50% cobalt substitution by nickel with increased Fischer-Tropsch activity and without sacrificing much C5+ selectivity. STEM-EDX and IR of adsorbed CO pointed to a cobalt enrichment of the nanoparticle's surface and a weaker adsorption of CO in Co-Ni supported on TiO2 and Nb2O5 and not on α-Al2O3, modifying the rate-determining step and the catalytic performance. Overall, we show the strong effect and potential of reducible metal oxides as support materials for bimetallic nanoparticles for enhanced catalytic performance.
Collapse
Affiliation(s)
- Carlos Hernández Mejía
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jessi E. S. van der Hoeven
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Petra E. de Jongh
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Krijn P. de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
22
|
The Challenge of CO Hydrogenation to Methanol: Fundamental Limitations Imposed by Linear Scaling Relations. Top Catal 2020. [DOI: 10.1007/s11244-020-01283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Li C, Liu Q, Boscoboinik JA, Zhou G. Tuning the surface composition of Cu 3Au binary alloy. Phys Chem Chem Phys 2020; 22:3379-3389. [PMID: 31976989 DOI: 10.1039/c9cp05729c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Using ambient-pressure X-ray photoelectron spectroscopy, here we report the real-time monitoring of dynamic surface composition evolution of Cu3Au(100) in response to the imposed environmental stimuli. Segregation of Au to the pristine surface under ultrahigh vacuum annealing leads to the phase separation with pure Au at the surface and alloyed Au in the subsurface. Upon switching to an oxidizing atmosphere, oxygen adsorption drives the surface segregation of Cu along with inward migration of pure Au to the subsurface. Switching to a H2 atmosphere results in oxygen loss from the oxygenated surface, thereby promoting Au surface segregation and reverting the surface to the pristine state with the Au termination. These measurements demonstrated the tunability of the surface composition of the binary alloy by utilizing the interplay between the tendency of segregating a more noble constituent to the surface and the tendency to segregate the more reactive one with the chemical stimuli.
Collapse
Affiliation(s)
- Chaoran Li
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, USA.
| | - Qianqian Liu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, USA.
| | | | - Guangwen Zhou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, USA.
| |
Collapse
|
24
|
Bergmann A, Roldan Cuenya B. Operando Insights into Nanoparticle Transformations during Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01831] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
25
|
Yun R, Zhang S, Ma W, Lv X, Liu S, Sheng T, Wang S. Fe/Fe3C Encapsulated in N-Doped Carbon Tubes: A Recyclable Catalyst for Hydrogenation with High Selectivity. Inorg Chem 2019; 58:9469-9475. [DOI: 10.1021/acs.inorgchem.9b01332] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruirui Yun
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Shi Zhang
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Wanjiao Ma
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Xiao Lv
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Shoujie Liu
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, P. R. China
| | - Tian Sheng
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|