1
|
Zhang Q, Mo D, Moon S, Janowitz J, Ringle D, Mays D, Diddle A, Rexroat J, Lee E, Luo T. Bubble nucleation and growth on microstructured surfaces under microgravity. NPJ Microgravity 2024; 10:13. [PMID: 38291056 PMCID: PMC10827752 DOI: 10.1038/s41526-024-00352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Understanding the dynamics of surface bubble formation and growth on heated surfaces holds significant implications for diverse modern technologies. While such investigations are traditionally confined to terrestrial conditions, the expansion of space exploration and economy necessitates insights into thermal bubble phenomena in microgravity. In this work, we conduct experiments in the International Space Station to study surface bubble nucleation and growth in a microgravity environment and compare the results to those on Earth. Our findings reveal significantly accelerated bubble nucleation and growth rates, outpacing the terrestrial rates by up to ~30 times. Our thermofluidic simulations confirm the role of gravity-induced thermal convective flow, which dissipates heat from the substrate surface and thus influences bubble nucleation. In microgravity, the influence of thermal convective flow diminishes, resulting in localized heat at the substrate surface, which leads to faster temperature rise. This unique condition enables quicker bubble nucleation and growth. Moreover, we highlight the influence of surface microstructure geometries on bubble nucleation. Acting as heat-transfer fins, the geometries of the microstructures influence heat transfer from the substrate to the water. Finer microstructures, which have larger specific surface areas, enhance surface-to-liquid heat transfer and thus reduce the rate of surface temperature rise, leading to slower bubble nucleation. Our experimental and simulation results provide insights into thermal bubble dynamics in microgravity, which may help design thermal management solutions and develop bubble-based sensing technologies.
Collapse
Affiliation(s)
- Qiushi Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Dongchuan Mo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Seunghyun Moon
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | - Dan Ringle
- Space Tango, 611 Winchester Rd, Lexington, KY, USA
| | - David Mays
- Space Tango, 611 Winchester Rd, Lexington, KY, USA
| | | | | | - Eungkyu Lee
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA.
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Jet injectors: Perspectives for small volume delivery with lasers. Adv Drug Deliv Rev 2022; 182:114109. [PMID: 34998902 DOI: 10.1016/j.addr.2021.114109] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
Needle-free jet injectors have been proposed as an alternative to injections with hypodermic needles. Currently, a handful of commercial needle-free jet injectors already exist. However, these injectors are designed for specific injections, typically limited to large injection volumes into the deeper layers beneath the skin. There is growing evidence of advantages when delivering small volumes into the superficial skin layers, namely the epidermis and dermis. Injections such as vaccines and insulin would benefit from delivery into these superficial layers. Furthermore, the same technology for small volume needle-free injections can serve (medical) tattooing as well as other personalized medicine treatments. The research dedicated to needle-free jet injectors actuated by laser energy has increased in the last decade. In this case, the absorption of the optical energy by the liquid results in an explosively growing bubble. This bubble displaces the rest of the liquid, resulting in a fast microfluidic jet which can penetrate the skin. This technique allows for precise control over volumes (pL to µL) and penetration depths (µm to mm). Furthermore, these injections can be tuned without changing the device, by varying parameters such as laser power, beam diameter and filling level of the liquid container. Despite the published research on the working principles and capabilities of individual laser-actuated jet injectors, a thorough overview encompassing all of them is lacking. In this perspective, we will discuss the current status of laser-based jet injectors and contrast their advantages and limitations, as well as their potential and challenges.
Collapse
|
3
|
Zhang Q, Li R, Lee E, Luo T. Optically Driven Gold Nanoparticles Seed Surface Bubble Nucleation in Plasmonic Suspension. NANO LETTERS 2021; 21:5485-5492. [PMID: 33939430 DOI: 10.1021/acs.nanolett.0c04913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal surface bubbles play important roles in applications like microfluidics and biosensing, but their formation on transparent substrates immersed in a plasmonic nanoparticle (NP) suspension has an unknown origin. Here, we reveal NPs deposited on the transparent substrate by optical forces are responsible for the nucleation of such photothermal surface bubbles. We show the surface bubble formation is always preceded by the optically driven NPs moving toward and deposited to the surface. Interestingly, such optically driven motion can happen both along and against the photon stream. The laser power density thresholds to form a surface bubble drastically differ depending on if the surface is forward- or backward-facing the light propagation direction. We attributed this to different optical power densities needed to enable optical pulling and pushing of NPs in the suspension, as optical pulling requires higher light intensity to excite supercavitation around NPs to enable proper optical configuration.
Collapse
Affiliation(s)
- Qiushi Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ruiyang Li
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Eungkyu Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Center for Sustainable Energy of Notre Dame (ND Energy), University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces. Proc Natl Acad Sci U S A 2021; 118:2103215118. [PMID: 34088844 DOI: 10.1073/pnas.2103215118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The physicochemical hydrodynamics of bubbles and droplets out of equilibrium, in particular with phase transitions, display surprisingly rich and often counterintuitive phenomena. Here we experimentally and theoretically study the nucleation and early evolution of plasmonic bubbles in a binary liquid consisting of water and ethanol. Remarkably, the submillimeter plasmonic bubble is found to be periodically attracted to and repelled from the nanoparticle-decorated substrate, with frequencies of around a few kilohertz. We identify the competition between solutal and thermal Marangoni forces as the origin of the periodic bouncing. The former arises due to the selective vaporization of ethanol at the substrate's side of the bubble, leading to a solutal Marangoni flow toward the hot substrate, which pushes the bubble away. The latter arises due to the temperature gradient across the bubble, leading to a thermal Marangoni flow away from the substrate, which sucks the bubble toward it. We study the dependence of the frequency of the bouncing phenomenon from the control parameters of the system, namely the ethanol fraction and the laser power for the plasmonic heating. Our findings can be generalized to boiling and electrolytically or catalytically generated bubbles in multicomponent liquids.
Collapse
|
5
|
Li X, Wang Y, Zeng B, Detert M, Prosperetti A, Zandvliet HJW, Lohse D. Plasmonic Microbubble Dynamics in Binary Liquids. J Phys Chem Lett 2020; 11:8631-8637. [PMID: 32960058 PMCID: PMC7569674 DOI: 10.1021/acs.jpclett.0c02492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The growth of surface plasmonic microbubbles in binary water/ethanol solutions is experimentally studied. The microbubbles are generated by illuminating a gold nanoparticle array with a continuous wave laser. Plasmonic bubbles exhibit ethanol concentration-dependent behaviors. For low ethanol concentrations (fe) of ≲67.5%, bubbles do not exist at the solid-liquid interface. For high fe values of ≳80%, the bubbles behave as in pure ethanol. Only in an intermediate window of 67.5% ≲ fe ≲ 80% do we find sessile plasmonic bubbles with a highly nontrivial temporal evolution, in which as a function of time three phases can be discerned. (1) In the first phase, the microbubbles grow, while wiggling. (2) As soon as the wiggling stops, the microbubbles enter the second phase in which they suddenly shrink, followed by (3) a steady reentrant growth phase. Our experiments reveal that the sudden shrinkage of the microbubbles in the second regime is caused by a depinning event of the three-phase contact line. We systematically vary the ethanol concentration, laser power, and laser spot size to unravel water recondensation as the underlying mechanism of the sudden bubble shrinkage in phase 2.
Collapse
Affiliation(s)
- Xiaolai Li
- Physics
of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Robotics
Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Yuliang Wang
- Robotics
Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
- Beijing
Advanced Innovation Center for Biomedical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Binglin Zeng
- Physics
of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Robotics
Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China
| | - Marvin Detert
- Physics
of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The Netherlands
| | - Andrea Prosperetti
- Physics
of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Harold J. W. Zandvliet
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The Netherlands
| | - Detlef Lohse
- Physics
of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and
J. M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Max
Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|