1
|
Couch DE, San Marchi MM, Hansen N. Experimental observation of molecular-weight growth by the reactions of o-benzyne with benzyl radicals. Phys Chem Chem Phys 2024; 26:24833-24840. [PMID: 39290192 DOI: 10.1039/d4cp02560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The chemistry of ortho-benzyne (o-C6H4) is of fundamental importance due to its role as an essential molecular building block in molecular-weight growth reactions. Here, we report on an experimental investigation of the reaction of o-C6H4 with benzyl (C7H7) radicals in a well-controlled flash pyrolysis experiment using a resistively heated SiC microtubular reactor at temperatures of 800-1600 K and pressures near 30 torr. To this end, the reactants o-C6H4 and C7H7 were pyrolytically generated from 1,2-diiodobenzene and benzyl bromide, respectively. Using molecular-beam time-of-flight mass spectrometry, we found that o-C6H4 associates with the benzyl to form C13H11 radicals, which decompose at higher temperatures via H-loss to form closed-shell C13H10 molecules. Our experimental results agree with earlier theoretical calculations by Matsugi and Miyoshi [Phys. Chem. Chem. Phys., 2012, 14, 9722-9728], who predicted the formation of fluorene (C13H10) + H to be the dominant reaction channel. At temperatures above 1400 K, we also observed the formation of C13H9 radicals, most likely the resonance-stabilized fluorenyl π-radical. Our study confirms that molecular-mass growth via the o-C6H4 + C7H7 reaction provides a versatile pathway for introducing five-membered rings, and hence curved structures, into polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- David E Couch
- Department of Chemistry, United States Air Force Academy, CO 80840, USA
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA.
| | - Myrsini M San Marchi
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA.
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA.
| |
Collapse
|
2
|
Panchagnula S, Kamer J, Candian A, Hrodmarsson HR, Linnartz H, Bouwman J, Tielens AGGM. Laser-induced fragmentation of coronene cations. Phys Chem Chem Phys 2024; 26:18557-18570. [PMID: 38884178 DOI: 10.1039/d4cp01301h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Polycyclic aromatic hydrocarbons are an important component of the interstellar medium of galaxies and photochemistry plays a key role in the evolution of these species in space. Here, we explore the photofragmentation behaviour of the coronene cation (C24H12˙+) using time-of-flight mass spectrometry. The experiments show photodissociation fragmentation channels including the formation of bare carbon clusters (Cn˙+) and hydrocarbon chains (CnHx+). The mass spectrum of coronene is dominated by peaks from C11˙+ and C7H+. Density functional theory was used to calculate relative energies, potential dissociation pathways, and possible structures for relevant species. We identify 6-6 → 5-7 ring isomerisation as a key step in the formation of both the bare carbon clusters and the hydrocarbon chains observed in this study. We present the dissociation mechanism outlined here as a potential formation route for C60 and other astrochemically relevant species.
Collapse
Affiliation(s)
- Sanjana Panchagnula
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
- Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Jerry Kamer
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Alessandra Candian
- Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Helgi R Hrodmarsson
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Harold Linnartz
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Jordy Bouwman
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Alexander G G M Tielens
- Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| |
Collapse
|
3
|
Karir G, Mendez-Vega E, Portela-Gonzalez A, Saraswat M, Sander W, Hemberger P. The elusive phenylethynyl radical and its cation: synthesis, electronic structure, and reactivity. Phys Chem Chem Phys 2024; 26:18256-18265. [PMID: 38904382 DOI: 10.1039/d4cp02129k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Alkynyl radicals and cations are crucial reactive intermediates in chemistry, but often evade direct detection. Herein, we report the direct observation of the phenylethynyl radical (C6H5CC˙) and its cation (C6H5CC+), which are two of the most reactive intermediates in organic chemistry. The radical is generated via pyrolysis of (bromoethynyl)benzene at temperatures above 1500 K and is characterized by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES). Photoionization of the phenylethynyl radical yields the phenylethynyl cation, which has never been synthesized due to its extreme electrophilicity. Vibrationally-resolved ms-TPES assisted by ab initio calculations unveiled the complex electronic structure of the phenylethynyl cation, which appears at an adiabatic ionization energy (AIE) of 8.90 ± 0.05 eV and exhibits an uncommon triplet (3B1) ground state, while the closed-shell singlet (1A1) state lies just 2.8 kcal mol-1 (0.12 eV) higher in energy. The reactive phenylethynyl radical abstracts hydrogen to form ethynylbenzene (C6H5CCH) but also isomerizes via H-shift to the o-, m-, and p-ethynylphenyl isomers (C6H4CCH). These radicals are very reactive and undergo ring-opening followed by H-loss to form a mixture of C8H4 triynes, along with low yields of cyclic 3- and 4-ethynylbenzynes (C6H3CCH). At higher temperatures, dehydrogenation from the unbranched C8H4 triynes forms the linear tetraacetylene (C8H2), an astrochemically relevant polyyne.
Collapse
Affiliation(s)
- Ginny Karir
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany.
| | - Enrique Mendez-Vega
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany.
| | | | - Mayank Saraswat
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany.
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany.
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute (PSI), Villigen CH-5232, Switzerland.
| |
Collapse
|
4
|
Schneiker A, Góbi S, Ragupathy G, Keresztes B, Bazsó G, Tarczay G. Investigating H-atom reactions in small PAHs with imperfect aromaticity: A combined experimental and computational study of indene (C9H8) and indane (C9H10). J Chem Phys 2024; 160:214303. [PMID: 38832739 DOI: 10.1063/5.0209722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely recognized as catalysts for interstellar H2 formation. Extensive exploration into the catalytic potential of various PAHs has encompassed both theoretical investigations and experimental studies. In the present study, we focused on studying the reactivity of an imperfect aromatic molecule, indene (C9H8), and its hydrogenated counterpart, indane (C9H10), as potential catalysts for H2 formation within the interstellar medium. The reactions of these molecules with H atoms at 3.1 K were investigated experimentally using the para-H2 matrix isolation technique. Our experimental results demonstrate that both indene and indane are reactive toward H atoms. Indene can participate in H-atom-abstraction and H-atom-addition reactions, whereas indane primarily undergoes H-atom-abstraction reactions. The H-atom-abstraction reaction of indene results in the formation of the 1-indenyl radical (R1) (C9H7) and H2 molecule. Simultaneously, an H-atom-addition reaction forms the 1,2-dihydro-indene-3-yl radical (R2) (C9H9). Experiments also reveal that the H-atom-abstraction reaction of indane also produces the R2 radical. To the best of our knowledge, this study represents the first reporting of the infrared spectra of R1 and R2 radicals. The experimental results, combined with theoretical findings, suggest that indane and indene may play a role in the catalytic formation of interstellar H2. Furthermore, these results imply a quasi-equilibrium between the investigated molecules and the formed radicals via H-atom-addition and H-atom-abstraction reactions.
Collapse
Affiliation(s)
- A Schneiker
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- George Hevesy Doctoral School, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - S Góbi
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - G Ragupathy
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - B Keresztes
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- George Hevesy Doctoral School, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - G Bazsó
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - G Tarczay
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Centre for Astrophysics and Space Science, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
5
|
Kanayama K, Nakamura H, Maruta K, Bodi A, Hemberger P. Conformer-Specific Photoelectron Spectroscopy of Carbonic Acid: H 2CO 3. J Phys Chem Lett 2024; 15:2658-2664. [PMID: 38426443 PMCID: PMC10945571 DOI: 10.1021/acs.jpclett.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Carbonic acid (H2CO3) is a fundamental species in biological, ecological, and astronomical systems. However, its spectroscopic characterization is incomplete because of its reactive nature. The photoionization (PI) and the photoion mass-selected threshold photoelectron (ms-TPE) spectra of H2CO3 were obtained by utilizing vacuum ultraviolet (VUV) synchrotron radiation and double imaging photoelectron photoion coincidence spectroscopy. Two carbonic acid conformers, namely, cis-cis and cis-trans, were identified. Experimental adiabatic ionization energies (AIEs) of cis-cis and cis-trans H2CO3 were determined to be 11.27 ± 0.02 and 11.18 ± 0.03 eV, and the cation enthalpies of formation could be derived as ΔfH°0K = 485 ± 2 and 482 ± 3 kJ mol-1, respectively. The cis-cis conformer shows intense peaks in the ms-TPES that are assigned to the C=O/C-OH stretching mode, while the cis-trans conformer exhibits a long progression to which two C=O/C-OH stretching modes contribute. The TPE spectra allow for the sensitive and conformer-selective detection of carbonic acid in terrestrial experiments to better understand astrochemical reactions.
Collapse
Affiliation(s)
- Keisuke Kanayama
- Laboratory
for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Institute
of Fluid Science, Tohoku University 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
- Graduate
School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Hisashi Nakamura
- Institute
of Fluid Science, Tohoku University 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Kaoru Maruta
- Institute
of Fluid Science, Tohoku University 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Andras Bodi
- Laboratory
for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Patrick Hemberger
- Laboratory
for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
6
|
Rap DB, Schrauwen JGM, Redlich B, Brünken S. Ionic fragmentation products of benzonitrile as important intermediates in the growth of polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 2024; 26:7296-7307. [PMID: 38353151 PMCID: PMC10900304 DOI: 10.1039/d3cp05574d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In various astronomical environments such as the interstellar medium or (exo)planetary atmospheres, an interplay of bottom-up growth and top-down destruction processes of (polycyclic) aromatic hydrocarbons (PAHs) takes place. To get more insight into the interplay of both processes, we disentangle the fragmentation and formation processes that take place upon dissociative ionization of benzonitrile. We build on previous spectroscopic detections of the ionic fragmentation products of benzonitrile and use these as reactants for low-temperature bottom-up ion-molecule reactions with acetylene. By combining kinetics and infrared action spectroscopy, we reveal exothermic pathways to various (polycyclic) aromatic molecules, including the pentalene and phenylacetylene radical cations. We determine the reaction rate coefficients and unambiguously assign the structures of the reaction products. The data is supplemented by potential energy surface calculations and the analysis of non-covalent interactions. This study shows the unexpected formation of a linked four- and six-membered ring structure (phenylcyclobutadiene radical cation) with molecular formula C10H8˙+, and not the commonly observed isomer naphthalene˙+. All observed reactions proceed via radiative association processes and are relevant for the chemistry in (cold) astrochemical environments.
Collapse
Affiliation(s)
- Daniël B Rap
- Radboud University, FELIX Laboratory, Institute for Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Johanna G M Schrauwen
- Radboud University, FELIX Laboratory, Institute for Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Britta Redlich
- Radboud University, FELIX Laboratory, Institute for Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Sandra Brünken
- Radboud University, FELIX Laboratory, Institute for Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Rap DB, Simon A, Steenbakkers K, Schrauwen JGM, Redlich B, Brünken S. Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory. Faraday Discuss 2023; 245:221-244. [PMID: 37404008 PMCID: PMC10510038 DOI: 10.1039/d3fd00015j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/22/2023] [Indexed: 07/06/2023]
Abstract
The cationic fragmentation products in the dissociative ionization of pyridine and benzonitrile have been studied by infrared action spectroscopy in a cryogenic ion trap instrument at the Free-Electron Lasers for Infrared eXperiments (FELIX) Laboratory. A comparison of the experimental vibrational fingerprints of the dominant cationic fragments with those from quantum chemical calculations revealed a diversity of molecular fragment structures. The loss of HCN/HNC is shown to be the major fragmentation channel for both pyridine and benzonitrile. Using the determined structures of the cationic fragments, potential energy surfaces have been calculated to elucidate the nature of the neutral fragment partner. In the fragmentation chemistry of pyridine, multiple non-cyclic structures are formed, whereas the fragmentation of benzonitrile dominantly leads to the formation of cyclic structures. Among the fragments are linear cyano-(di)acetylene˙+, methylene-cyclopropene˙+ and o- and m-benzyne˙+ structures, the latter possible building blocks in interstellar polycyclic aromatic hydrocarbon (PAH) formation chemistry. Molecular dynamics simulations using density functional based tight binding (MD/DFTB) were performed and used to benchmark and elucidate the different fragmentation pathways based on the experimentally determined structures. The implications of the difference in fragments observed for pyridine and benzonitrile are discussed in an astrochemical context.
Collapse
Affiliation(s)
- Daniël B Rap
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques (LCPQ), Fédération FeRMI, CNRS & Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Kim Steenbakkers
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Johanna G M Schrauwen
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Britta Redlich
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Sandra Brünken
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Yang Z, Galimova GR, He C, Goettl SJ, Paul D, Lu W, Ahmed M, Mebel AM, Li X, Kaiser RI. Gas-phase formation of the resonantly stabilized 1-indenyl (C 9H 7•) radical in the interstellar medium. SCIENCE ADVANCES 2023; 9:eadi5060. [PMID: 37682989 PMCID: PMC10491290 DOI: 10.1126/sciadv.adi5060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The 1-indenyl (C9H7•) radical, a prototype aromatic and resonantly stabilized free radical carrying a six- and a five-membered ring, has emerged as a fundamental molecular building block of nonplanar polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanostructures in deep space and combustion systems. However, the underlying formation mechanisms have remained elusive. Here, we reveal an unconventional low-temperature gas-phase formation of 1-indenyl via barrierless ring annulation involving reactions of atomic carbon [C(3P)] with styrene (C6H5C2H3) and propargyl (C3H3•) with phenyl (C6H5•). Macroscopic environments like molecular clouds act as natural low-temperature laboratories, where rapid molecular mass growth to 1-indenyl and subsequently complex PAHs involving vinyl side-chained aromatics and aryl radicals can occur. These reactions may account for the formation of PAHs and their derivatives in the interstellar medium and carbonaceous chondrites and could close the gap of timescales of their production and destruction in our carbonaceous universe.
Collapse
Affiliation(s)
- Zhenghai Yang
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Galiya R. Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Chao He
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Shane J. Goettl
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Dababrata Paul
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xiaohu Li
- Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China
- Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, P. R. China
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
9
|
Fischer I, Hemberger P. Photoelectron Photoion Coincidence Spectroscopy of Biradicals. Chemphyschem 2023; 24:e202300334. [PMID: 37325876 DOI: 10.1002/cphc.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
The electronic structure of biradicals is characterized by the presence of two unpaired electrons in degenerate or near-degenerate molecular orbitals. In particular, some of the most relevant species are highly reactive, difficult to generate cleanly and can only be studied in the gas phase or in matrices. Unveiling their electronic structure is, however, of paramount interest to understand their chemistry. Photoelectron photoion coincidence (PEPICO) spectroscopy is an excellent approach to explore the electronic states of biradicals, because it enables a direct correlation between the detected ions and electrons. This permits to extract unique vibrationally resolved photoion mass-selected threshold photoelectron spectra (ms-TPES) to obtain insight in the electronic structure of both the neutral and the cation. In this review we highlight most recent advances on the spectroscopy of biradicals and biradicaloids, utilizing PEPICO spectroscopy and vacuum ultraviolet (VUV) synchrotron radiation.
Collapse
Affiliation(s)
- Ingo Fischer
- Julius-Maximilians-Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Am Hubland, D-97074, Würzburg, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232, Villigen, Switzerland
| |
Collapse
|
10
|
Schleier D, Gerlach M, Schaffner D, Mukhopadhyay DP, Hemberger P, Fischer I. Threshold photoelectron spectroscopy of trimethylborane and its pyrolysis products. Phys Chem Chem Phys 2023; 25:4511-4518. [PMID: 36445209 DOI: 10.1039/d2cp04513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Trimethylborane (TMB) and its chemistry upon pyrolysis have been investigated by threshold photoelectron spectroscopy. TMB shows an unstructured spectrum and its adiabatic ionization energy (IEad) has been determined to be 9.93 ± 0.1 eV. Dissociative photoionization induces a methyl radical loss in TMB and the barrier to dissociation in the cation is measured to be 0.65 ± 0.1 eV. Upon pyrolysis methane loss dominates, leading to C2H5B, which can exist in five different isomeric structures. Quantum chemical calculations were used to investigate possible methane loss mechanisms as well as the isomerization pathways on the C2H5B potential energy surface. Through isomer-selective photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) the two isomers CH3BCH2 and CH3CHBH were identified by their ms-TPE spectra and IEad values of 8.55 ± 0.02 eV and 8.73 ± 0.02 eV were determined, respectively. A second channel leading to the loss of ethene from TMB forms CH2BH, which exhibits an IEad value of 9.37 ± 0.03 eV. The reaction mechanism in the literature needs to be expanded by an additional methane loss from the intermediately formed ethyl methyl borane.
Collapse
Affiliation(s)
- Domenik Schleier
- Institute for Physical and Theoretical Chemistry, University of Würzburg, 97074, Würzburg, Germany.
| | - Marius Gerlach
- Institute for Physical and Theoretical Chemistry, University of Würzburg, 97074, Würzburg, Germany.
| | - Dorothee Schaffner
- Institute for Physical and Theoretical Chemistry, University of Würzburg, 97074, Würzburg, Germany.
| | - Deb Pratim Mukhopadhyay
- Institute for Physical and Theoretical Chemistry, University of Würzburg, 97074, Würzburg, Germany.
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland.
| | - Ingo Fischer
- Institute for Physical and Theoretical Chemistry, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
11
|
Li W, Zhao L, Kaiser RI. A unified reaction network on the formation of five-membered ringed polycyclic aromatic hydrocarbons (PAHs) and their role in ring expansion processes through radical-radical reactions. Phys Chem Chem Phys 2023; 25:4141-4150. [PMID: 36655590 DOI: 10.1039/d2cp05305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exploiting a chemical microreactor in combination with an isomer-selective product identification through fragment-free photoionization utilizing tunable vacuum ultraviolet (VUV) light in tandem with the detection of the ionized molecules by a high resolution reflection time-of-flight mass spectrometer (Re-TOF-MS), the present investigation reveals molecular mass growth processes to four distinct polycyclic aromatic hydrocarbons carrying two six- and one five-membered ring (C13H10): 3H-cyclopenta[a]naphthalene, 1H-cyclopenta[b]naphthalene, 1H-cyclopenta[a]naphthalene, and fluorene in the gas phase. Temperatures of 973 and 1023 K simulating conditions in combustion settings along with circumstellar envelopes of carbon-rich stars and planetary nebulae. These reactions highlight the importance of methyl-substituted aromatic reactants (biphenyl, naphthalene) which can be converted to the methylene (-CH2˙) motive by hydrogen abstraction or photolysis. Upon reaction with acetylene, methylene-substituted aromatics carrying a hydrogen atom at the ortho position of the ring can be then converted to cyclopentadiene-annulated aromatics thus providing a versatile pathway to five-membered ring aromatics at elevated temperatures.
Collapse
Affiliation(s)
- Wang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China.
| | - Long Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China. .,School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
12
|
Gerlach M, Karaev E, Schaffner D, Hemberger P, Fischer I. Threshold Photoelectron Spectrum of m-Benzyne. J Phys Chem Lett 2022; 13:11295-11299. [PMID: 36449562 DOI: 10.1021/acs.jpclett.2c03216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to their unusual electronic structure, the biradical m-benzyne, C6H4, and its cation are of considerable interest in chemistry. Here, the photoion mass-selected threshold photoelectron spectrum of the m-benzyne biradical is presented. An adiabatic ionization energy of 8.65 ± 0.015 eV is derived, while a vibrational progression of 0.10 eV is assigned to the ν9+ ring breathing mode, in excellent agreement with computations. The experimental spectrum was reproduced well by Franck-Condon spectral modeling of the 2A1 ← X 1A1 transition, in which the cation retains a monocyclic C6 framework. The energetically close-lying bicyclic 2A2 cation state exhibits low Franck-Condon factors, due to the large change in geometry, and thus cannot be observed.
Collapse
Affiliation(s)
- M Gerlach
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - E Karaev
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - D Schaffner
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - P Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut (PSI), CH-5232 Villigen-PSI, Switzerland
| | - I Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
13
|
Banhatti S, Rap DB, Simon A, Leboucher H, Wenzel G, Joblin C, Redlich B, Schlemmer S, Brünken S. Formation of the acenaphthylene cation as a common C 2H 2-loss fragment in dissociative ionization of the PAH isomers anthracene and phenanthrene. Phys Chem Chem Phys 2022; 24:27343-27354. [PMID: 36326610 PMCID: PMC9673687 DOI: 10.1039/d2cp03835h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are thought to be a major constituent of astrophysical environments, being the carriers of the ubiquitous aromatic infrared bands (AIBs) observed in the spectra of galactic and extra-galactic sources that are irradiated by ultraviolet (UV) photons. Small (2-cycles) PAHs were unambiguously detected in the TMC-1 dark cloud, showing that PAH growth pathways exist even at low temperatures. The processing of PAHs by UV photons also leads to their fragmentation, which has been recognized in recent years as an alternative route to the generally accepted bottom-up chemical pathways for the formation of complex hydrocarbons in UV-rich interstellar regions. Here we consider the C12H8+ ion that is formed in our experiments from the dissociative ionization of the anthracene and phenanthrene (C14H10) molecules. By employing the sensitive action spectroscopic scheme of infrared pre-dissociation (IRPD) in a cryogenic ion trap instrument coupled to the free-electron lasers at the FELIX Laboratory, we have recorded the broadband and narrow line-width gas-phase IR spectra of the fragment ions (C12H8+) and also the reference spectra of three low energy isomers of C12H8+. By comparing the experimental spectra to those obtained from quantum chemical calculations we have identified the dominant structure of the fragment ion formed in the dissociation process to be the acenaphthylene cation for both isomeric precursors. Ab initio molecular dynamics simulations are presented to elucidate the fragmentation process. This result reinforces the dominant role of species containing a pentagonal ring in the photochemistry of small PAHs.
Collapse
Affiliation(s)
- Shreyak Banhatti
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany.
| | - Daniël B Rap
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques (LCPQ), Fédération FeRMI, CNRS & Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Heloïse Leboucher
- Laboratoire de Chimie et Physique Quantiques (LCPQ), Fédération FeRMI, CNRS & Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Gabi Wenzel
- Center for Interstellar Catalysis (InterCat), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, 31028 Toulouse, France
| | - Britta Redlich
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| | - Stephan Schlemmer
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany.
| | - Sandra Brünken
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Lemmens AK, Rap DB, Brünken S, Buma WJ, Rijs AM. Polycyclic aromatic hydrocarbon growth in a benzene discharge explored by IR-UV action spectroscopy. Phys Chem Chem Phys 2022; 24:14816-14824. [PMID: 35695165 PMCID: PMC9215700 DOI: 10.1039/d2cp01631a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022]
Abstract
Infrared signatures of polycyclic aromatic hydrocarbons (PAHs) are detected towards many phases of stellar evolution. PAHs are major players in the carbon chemistry of the interstellar medium, forming the connection between small hydrocarbons and large fullerenes. However, as details on the formation of PAHs in these environments are still unclear, modeling their abundance and chemistry has remained far from trivial. By combining molecular beam mass-selective IR spectroscopy and calculated IR spectra, we analyze the discharge of benzene and identify resulting products including larger PAHs, radicals and intermediates that serve as promising candidates for radio astronomical searches. The identification of various reaction products indicates that different gas-phase reaction mechanisms leading to PAH growth must occur under the same conditions to account for all observed PAH-related species, thereby revealing the complex and interconnected network of PAH formation pathways. The results of this study highlight key (exothermic) reactions that need to be included in astrochemical models describing the carbon chemistry in our universe.
Collapse
Affiliation(s)
- Alexander K Lemmens
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| | - Daniël B Rap
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| | - Sandra Brünken
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
| | - Anouk M Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
15
|
Wu WQ, Xia ZY, Chen WH, Chen LP, Li HB, Guo ZC. Melting Effect on the Thermal Hazard of Anthraquinone Dyes Waste: Based on the Thermal Decomposition Characteristics and Quantum Mechanics. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wen-qian Wu
- Department of Safety Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ze-yuan Xia
- Department of Safety Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wang-hua Chen
- Department of Safety Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Li-ping Chen
- Department of Safety Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Hua-bo Li
- Department of Safety Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Zi-chao Guo
- Department of Safety Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
16
|
Hirsch F, Fischer I, Bakels S, Rijs AM. Gas-Phase Infrared Spectra of the C 7H 5 Radical and Its Bimolecular Reaction Products. J Phys Chem A 2022; 126:2532-2540. [PMID: 35427137 DOI: 10.1021/acs.jpca.2c01228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Resonance-stabilized radicals are considered as possible intermediates in the formation of polycyclic aromatic hydrocarbons (PAHs) in interstellar space. Here, we investigate the fulvenallenyl radical, the most stable C7H5 isomer by IR/UV ion dip spectroscopy employing free electron laser radiation in the mid-infrared region between 550 and 1750 cm-1. The radical is generated by pyrolysis from phthalide. Various jet-cooled reaction products are identified by their mass-selective IR spectra in the fingerprint region, based on a comparison with computed spectra. Interestingly, benzyl is present as a second resonance-stabilized radical. It is connected to fulvenallenyl by a sequence of two H atom losses or additions. Among the identified aromatic hydrocarbons are toluene and styrene, as well as polycyclic molecules, such as indene, naphthalene, fluorene and phenanthrene. Mechanisms for the formation of PAH from C7H5 have already been suggested in previous computational work. In particular, the radical/radical reaction of two fulvenallenyl radicals provides an efficient route to phenanthrene in one bimolecular step and might be relevant for PAH formation under astrochemical conditions.
Collapse
Affiliation(s)
- Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
17
|
Hemberger P, Wu X, Pan Z, Bodi A. Continuous Pyrolysis Microreactors: Hot Sources with Little Cooling? New Insights Utilizing Cation Velocity Map Imaging and Threshold Photoelectron Spectroscopy. J Phys Chem A 2022; 126:2196-2210. [PMID: 35316066 DOI: 10.1021/acs.jpca.2c00766] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistively heated silicon carbide microreactors are widely applied as continuous sources to selectively prepare elusive and reactive intermediates with astrochemical, catalytic, or combustion relevance to measure their photoelectron spectrum. These reactors also provide deep mechanistic insights into uni- and bimolecular chemistry. However, the sampling conditions and effects have not been fully characterized. We use cation velocity map imaging to measure the velocity distribution of the molecular beam signal and to quantify the scattered, rethermalized background sample. Although translational cooling is efficient in the adiabatic expansion from the reactor, the breakdown diagrams of methane and chlorobenzene confirm that the molecular beam component exhibits a rovibrational temperature comparable with that of the reactor. Thus, rovibrational cooling is practically absent in the expansion from the microreactor. The high rovibrational temperature also affects the threshold photoelectron spectrum of both benzene and the allyl radical in the molecular beam, but to different degrees. While the extreme broadening of the benzene TPES suggests a complex ionization mechanism, the allyl TPES is in fact consistent with an internal temperature close to that of the reactor. The background, room-temperature spectra of both are superbly reproduced by Franck-Condon simulations at 300 K. On the one hand, this leads us to suggest that room-temperature reference spectra should be used in species identification. On the other hand, analysis of the allyl iodide pyrolysis data shows that iodine atoms often recombine to form molecular iodine on the chamber surfaces. Such sampling effects may distort the chemical composition of the scattered background with respect to the molecular beam signal emanating directly from the reactor. This must be considered in quantitative analyses and kinetic modeling.
Collapse
Affiliation(s)
- Patrick Hemberger
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Xiangkun Wu
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Zeyou Pan
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Andras Bodi
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
18
|
Schleier D, Hemberger P, Bodi A, Bouwman J. Threshold Photoelectron Spectroscopy of Quinoxaline, Quinazoline, and Cinnoline. J Phys Chem A 2022; 126:2211-2221. [PMID: 35357143 DOI: 10.1021/acs.jpca.2c01073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The threshold photoelectron spectra of cinnoline, quinazoline, and quinoxaline, three small naphthalene-analogue polycyclic nitrogen-containing hydrocarbons of C8H6N2 composition, were recorded. The spectra are assigned to understand their electronic structure and the role of isomerism. Furthermore, this work provides reference data for the selective identification of such species as gas-phase reaction products at low number densities. Imaging photoelectron photoion coincidence spectroscopy was used at the VUV beamline of the Swiss Light Source to record the spectra from the ionization onset to 12 eV. To assign and interpret the spectral features, we relied on (time-dependent) density functional theory and EOM-IP-CCSD calculations and computed vertical and adiabatic ionization energies as well as Franck-Condon factors to simulate ground- and excited-state spectra. Vibrational progressions belonging to four electronic states could be simulated in each of the samples, and we report a total of 12 adiabatic ionization energies, including the ones to the ground and excited cation states. Such a wealth of spectral information, as well as the reliable ab initio modeling, is promising with regards to analytical applications. While cinnoline can be easily distinguished by its lowest adiabatic ionization energy, quinazoline and quinoxaline show different vibrational fingerprints, which can be used to distinguish the three isomers even in complex reaction mixtures. Finally, we also relate the cation electronic states to the neutral molecular orbitals and note that Koopmans' approximation fails in these N2-containing species very much like it does in N2.
Collapse
Affiliation(s)
- Domenik Schleier
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, NL 2300 RA Leiden, The Netherlands.,Mass Spectrometry in Reactive Flows, Institute for Combustion and Gas Dynamics (IVG), Universität Duisburg-Essen, Duisburg 47057, Germany
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Jordy Bouwman
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, United States.,Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States.,Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT), NASA/SSERVI, Boulder, Colorado 80309, United States
| |
Collapse
|
19
|
Preitschopf T, Hirsch F, Lemmens AK, Rijs AM, Fischer I. The gas-phase infrared spectra of the 2-methylallyl radical and its high-temperature reaction products. Phys Chem Chem Phys 2022; 24:7682-7690. [PMID: 35302151 DOI: 10.1039/d2cp00400c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resonance-stabilized 2-methylallyl radical, 2-MA, is considered as a possible intermediate in the formation of polycyclic aromatic hydrocarbons (PAHs) in combustion processes. In this work, we report on its contribution to molecular growth in a high-temperature microreactor and provide mass-selective IR/UV ion dip spectra of the radical, as well as the various jet-cooled reaction products, employing free electron laser radiation in the mid-infrared region. Small (aromatic) hydrocarbons such as fulvene, benzene, styrene, or para-xylene, as well as polycyclic molecules, like (methylated) naphthalene, were identified with the aid of ab initio DFT computations. Several reaction products differ by one or more methyl groups, suggesting that molecular growth is dominated by (de)methylation in the reactor.
Collapse
Affiliation(s)
- Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alexander K Lemmens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
20
|
Fischer I, Pratt ST. Photoelectron spectroscopy in molecular physical chemistry. Phys Chem Chem Phys 2022; 24:1944-1959. [PMID: 35023533 DOI: 10.1039/d1cp04984d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoelectron spectroscopy has long been a powerful method in the toolbox of experimental physical chemistry and molecular physics. Recent improvements in coincidence methods, charged-particle imaging, and electron energy resolution have greatly expanded the variety of environments in which photoelectron spectroscopy can be applied, as well as the range of questions that can now be addressed. In this Perspectives Article, we focus on selected recent studies that highlight these advances and research areas. The topics include reactive intermediates and new thermochemical data, high-resolution comparisons of experiment and theory using methods based on pulsed-field ionisation (PFI), and the application of photoelectron spectroscopy as an analytical tool to monitor chemical reactions in complex environments, like model flames, catalytic or high-temperature reactors.
Collapse
Affiliation(s)
- Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
21
|
McCabe MN, Hemberger P, Campisi D, Broxterman JC, Reusch E, Bodi A, Bouwman J. Formation of phenylacetylene and benzocyclobutadiene in the ortho-benzyne + acetylene reaction. Phys Chem Chem Phys 2022; 24:1869-1876. [PMID: 34989380 DOI: 10.1039/d1cp05183k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ortho-benzyne is a potentially important precursor for polycyclic aromatic hydrocarbon formation, but much is still unknown about its chemistry. In this work, we report on a combined experimental and theoretical study of the o-benzyne + acetylene reaction and employ double imaging threshold photoelectron photoion coincidence spectroscopy to investigate the reaction products with isomer specificity. Based on photoion mass-selected threshold photoelectron spectra, Franck-Condon simulations, and ionization cross section calculations, we conclude that phenylacetylene and benzocyclobutadiene (PA : BCBdiene) are formed at a non-equilibrium ratio of 2 : 1, respectively, in a pyrolysis microreactor at a temperature of 1050 K and a pressure of ∼20 mbar. The C8H6 potential energy surface (PES) is explored to rationalize the formation of the reaction products. Previously unidentified pathways have been found by considering the open-shell singlet (OSS) character of various C8H6 reactive intermediates. Based on the PES data, a kinetic model is constructed to estimate equilibrium abundances of the two products. New insights into the reaction mechanism - with a focus on the OSS intermediates - and the products formed in the o-benzyne + acetylene reaction provide a greater level of understanding of the o-benzyne reactivity during the formation of aromatic hydrocarbons in combustion environments as well as in outflows of carbon-rich stars.
Collapse
Affiliation(s)
- Morgan N McCabe
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands.
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Dario Campisi
- Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Jeger C Broxterman
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands.
| | - Engelbert Reusch
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jordy Bouwman
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
22
|
Dobulis MA, Thompson MC, Jarrold CC. Identification of Isoprene Oxidation Reaction Products via Anion Photoelectron Spectroscopy. J Phys Chem A 2021; 125:10089-10102. [PMID: 34755517 DOI: 10.1021/acs.jpca.1c08176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a study on the oxidation of isoprene under several different conditions that may model both atmospheric and combustion chemistry. Anions, formed by passing isoprene/oxidant gas mixtures through a pulsed discharge generating a range of species, are separated via mass spectrometry and characterized by anion photoelectron (PE) spectroscopy supported by computations. Specifically, a UV-irradiated isoprene/O2 mixture, which additionally produces O3, and an isoprene/O2/H2 mixture, which generates •OH when passed through the discharge, were sampled. The mass spectra of ions generated under both conditions show the production of intact molecular ions, ion-molecule complexes (e.g., O2-, O4-, and O2-·isoprene), and singly deprotonated species (e.g., deprotonated isoprene, C5H7-). In addition, both smaller and oxidized fragments are observed using both gas mixtures, though relative abundances differ. From the UV-irradiated isoprene/O2 gas mixture, additional intact molecular products of reactions initiated by ozonolysis of isoprene, methylglyoxal, and dimethylglyoxal were observed. Fragmentation and oxidation of isoprene observed in both gas mixtures included species with m/z 39, 53, 67, 69, and 83 that we attribute to a series of alkyl- and alkenoxide-based anions. The coexistence of intact molecules and complexes with fragments and reaction products demonstrates the versatility of this ion source as a simple and efficient anion formation method for studying species that may be relevant in atmospheric and combustion chemistry.
Collapse
Affiliation(s)
- Marissa A Dobulis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael C Thompson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
23
|
Phillips M, Grun F, Schmitt P. Breath biomarkers of total body irradiation in non-human primates. J Breath Res 2021; 16. [PMID: 34781275 DOI: 10.1088/1752-7163/ac39aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Radiation exposure causes oxidative stress, eliciting production of metabolites that are exhaled in the breath as volatile organic compounds (VOCs). We evaluated breath VOCs as potential biomarkers for use in radiation biodosimetry. METHODS Five anesthetized non-human primates receive total body irradiation (TBI) of three daily fractions of 120 cGy per day for three days, resulting in a cumulative dose of 10.8 Gy. Breath samples were collected prior to irradiation and after each radiation fraction, and analyzed with gas chromatography mass spectrometry. RESULTS TBI elicited a prompt and statistically significant increase in the abundance of several hundred VOCs in the breath, including some that were increased more than five-fold, with100% sensitivity and 100% specificity for radiation exposure. The most significant breath VOC biomarkers of radiation mainly comprised straight-chain n-alkanes (e.g. hexane), as well as methylated alkanes (e.g. 3-methyl-pentane) and alkane derivatives (e.g. 2-butyl-1-octanol), consistent with metabolic products of oxidative stress. An unidentified breath VOC biomarker increased more than ten-fold following TBI, and rose linearly with the total cumulative dose of radiation (R2=0.92). CONCLUSIONS TBI of non-human primates elicited increased production of breath VOCs consistent with increased oxidative stress. These findings provide a rational basis for further evaluation of breath VOC biomarkers in human radiation biodosimetry.
Collapse
Affiliation(s)
- Michael Phillips
- Menssana Research INC, Suite 517, 211 Warren Street, Newark, NJ 07103, USA, Newark, New Jersey, 07103, UNITED STATES
| | - Felix Grun
- Mass Spectrometry Facility, University of California Irvine, Irvine, CA 92697-2025, Irvine, California, 92697, UNITED STATES
| | - Peter Schmitt
- Schmitt & Associates, , 211 Warren St, Newark, NJ 07103, Newark, New Jersey, 07103, UNITED STATES
| |
Collapse
|
24
|
Monluc L, Nikolayev AA, Medvedkov IA, Azyazov VN, Morozov AN, Mebel AM. The Reaction of o-Benzyne with Vinylacetylene: An Unexplored Way to Produce Naphthalene. Chemphyschem 2021; 23:e202100758. [PMID: 34767677 DOI: 10.1002/cphc.202100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Indexed: 11/09/2022]
Abstract
The mechanism and kinetics of the reaction of ortho-benzyne with vinylacetylene have been studied by ab initio and density functional CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) calculations of the pertinent potential energy surface combined with Rice-Ramsperger-Kassel-Marcus - Master Equation calculations of reaction rate constants at various temperatures and pressures. Under prevailing combustion conditions, the reaction has been shown to predominantly proceed by the biradical acetylenic mechanism initiated by the addition of C4 H4 to one of the C atoms of the triple bond in ortho-benzyne by the acetylenic end, with a significant contribution of the concerted addition mechanism. Following the initial reaction steps, an extra six-membered ring is produced and the rearrangement of H atoms in this new ring leads to the formation of naphthalene, which can further dissociate to 1- or 2-naphthyl radicals. The o-C6 H4 +C4 H4 reaction is highly exothermic, by ∼143 kcal/mol to form naphthalene and by 31-32 kcal mol-1 to produce naphthyl radicals plus H, but features relatively high entrance barriers of 9-11 kcal mol-1 . Although the reaction is rather slow, much slower than the reaction of phenyl radical with vinylacetylene, it forms naphthalene and 1- and 2-naphthyl radicals directly, with their relative yields controlled by the temperature and pressure, and thus represents a viable source of the naphthalene core under conditions where ortho-benzyne and vinylacetylene are available.
Collapse
Affiliation(s)
- Lisa Monluc
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA.,Present address: Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, FI, 32306, USA
| | - Anatoliy A Nikolayev
- Samara National Research University, Samara, 443086, Russia.,Lebedev Physical Institute, Samara, 443011, Russia
| | - Iakov A Medvedkov
- Samara National Research University, Samara, 443086, Russia.,Lebedev Physical Institute, Samara, 443011, Russia
| | - Valeriy N Azyazov
- Samara National Research University, Samara, 443086, Russia.,Lebedev Physical Institute, Samara, 443011, Russia
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, USA
| |
Collapse
|
25
|
Wu X, Zhou X, Hemberger P, Bodi A. Dissociative Photoionization of Chloro-, Bromo-, and Iodocyclohexane: Thermochemistry and the Weak C–Br Bond in the Cation. J Phys Chem A 2021; 125:646-656. [DOI: 10.1021/acs.jpca.0c10386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiangkun Wu
- Paul Scherrer Institute, Villigen 5232, Switzerland
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | | | - Andras Bodi
- Paul Scherrer Institute, Villigen 5232, Switzerland
| |
Collapse
|
26
|
Doddipatla S, Galimova GR, Wei H, Thomas AM, He C, Yang Z, Morozov AN, Shingledecker CN, Mebel AM, Kaiser RI. Low-temperature gas-phase formation of indene in the interstellar medium. SCIENCE ADVANCES 2021; 7:7/1/eabd4044. [PMID: 33523847 PMCID: PMC7775774 DOI: 10.1126/sciadv.abd4044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings-the essential building block of nonplanar PAHs-is still in its infancy. Exploiting crossed molecular beam experiments augmented by electronic structure calculations and astrochemical modeling, we reveal an unusual pathway leading to the formation of indene (C9H8)-the prototype aromatic molecule with a five-membered ring-via a barrierless bimolecular reaction involving the simplest organic radical-methylidyne (CH)-and styrene (C6H5C2H3) through the hitherto elusive methylidyne addition-cyclization-aromatization (MACA) mechanism. Through extensive structural reorganization of the carbon backbone, the incorporation of a five-membered ring may eventually lead to three-dimensional PAHs such as corannulene (C20H10) along with fullerenes (C60, C70), thus offering a new concept on the low-temperature chemistry of carbon in our galaxy.
Collapse
Affiliation(s)
- Srinivas Doddipatla
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
- Samara National Research University, Samara 443086, Russia
| | - Hongji Wei
- Department of Physics and Astronomy, Benedictine College, Atchison, KS 66002, USA
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Chao He
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | | | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
27
|
Lahm ME, Maynard RK, Turney JM, Weinhold F, Schaefer HF. Substituted Ortho-Benzynes: Properties of the Triple Bond. J Org Chem 2020; 85:9905-9914. [PMID: 32614582 DOI: 10.1021/acs.joc.0c01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ortho-benzyne has been well studied by both experiment and theory. Its substituted variants, however, have been less carefully examined. Benchmark data are computed for unsubstituted ortho-benzyne using several density functional theory functionals and basis sets, up to cc-pVQZ. Optimized geometries for the substituted ortho-benzyne as well as harmonic vibrational frequencies and singlet-triplet splittings are computed using the benchmarked functionals. A proximal (syn)OH substitution causes a mean θ1 distortion of +8.1 ± 1.4° from ortho-benzyne. Substituting in the proximal position with F shifts the singlet-triplet splitting by +4.5 ± 0.4 kcal mol-1 from ortho-benzyne. Natural bond orbital analysis, including natural Coulomb electrostatics, elucidates the presence of three influences from the selected substituents: hyperconjugative, resonance, and electrostatic effects.
Collapse
Affiliation(s)
- Mitchell E Lahm
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan K Maynard
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Justin M Turney
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Frank Weinhold
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Tuli LB, Mebel AM. Formation of phenanthrene via H‐assisted isomerization of 2‐ethynylbiphenyl produced in the reaction of phenyl with phenylacetylene. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lotefa Binta Tuli
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| |
Collapse
|