1
|
Acharjee D, Panda MK, Mahato AB, Das A, Ghosh S. Evidence of carrier diffusion between emission states in CdSe/ZnS core-shell quantum dots: a comprehensive investigation combining fluorescence lifetime correlation spectroscopy (FLCS) and single dot photoluminescence studies. NANOSCALE 2024; 16:18444-18454. [PMID: 39263802 DOI: 10.1039/d4nr02221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Investigation of carrier dynamics in CdSe/ZnS core-shell quantum dots (QDs) is performed using fluorescence-lifetime-correlation-spectroscopy (FLCS) and single-dot PL blinking studies. The origin of an emitted photon from a QD in an FLCS study is assigned to either an exciton state or trap state based on its excited state lifetime (τfl). Subsequently, two intrastate autocorrelation functions (ACFs) representing the exciton and trap states and one cross-correlation function (CCF) coupling these two states are constructed. Interestingly, the timescales of carrier diffusion (τR) show striking similarities across all three correlation functions, which further correlate with τR of the conventional FCS. However, ACFs notably deviate from the CCF in their μs progression patterns, with the latter showing growth, whereas the former ones display decay. This implies inter-state carrier diffusions leading to the QD blinking. Further study of single particle PL blinking on a surface-immobilized QD indicates shallow trap states near the band edge cause the blinking at low excitation power, while trion recombination becomes an additional contributing factor at higher pump power. Overall, the results highlight not only an excellent correlation between these two techniques but also the potential of our approach for achieving an accurate and comprehensive understanding of carrier dynamics in CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Asit Baran Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| |
Collapse
|
2
|
Gao Y, Xu S, Li Y, Chen B. Mn-doped CsPbCl 3 perovskite quantum dots: A dual-function probe for copper detection and temperature sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125219. [PMID: 39348739 DOI: 10.1016/j.saa.2024.125219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The low photoluminescence quantum yield (PLQY) of CsPbCl3 perovskite quantum dots (PQDs) poses a significant challenge to their application as ion detection probes. To address this issue, we enhanced the PLQY of CsPbCl3 PQDs through Mn doping. These enhanced PQDs were then employed as probes for the highly sensitive detection of Cu2+ ions and temperature. CsPbCl3:Mn PQDs with varying Mn/Pb ratios were synthesized via hot injection. The Mn doping introduced an emission band near 600 nm, with intensity increasing alongside doping concentration. At an Mn/Pb ratio of 2.0, the PLQY was enhanced nearly tenfold, from 5.46 % for undoped CsPbCl3 to 52.48 % for CsPbCl3:Mn. CsPbCl3:Mn PQDs with the highest PLQY were employed as luminescent probes, utilizing the fluorescence intensity ratio (FIR) technique for copper detection and temperature sensing. The experimental results demonstrated a linear relationship between the FIR and Cu2+ concentration over the range of 22.12 nM-1600 nM, with 22.12 nM being the calculated limit of detection. Analysis of the emission spectra and fluorescence lifetimes at varying Cu2+ concentrations revealed that electron transfer from CsPbCl3 to Cu2+ induced fluorescence quenching. CsPbCl3:Mn exhibits a high relative sensitivity of 15.89 % K-1 at 298 K, along with excellent reversibility. These findings highlight the potential application of CsPbCl3:Mn PQDs in both temperature sensing and the analysis of wear metals in engine lubricating oils.
Collapse
Affiliation(s)
- Yuefeng Gao
- College of Marine Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Sai Xu
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China.
| | - Yanbiao Li
- College of Marine Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Baojiu Chen
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China.
| |
Collapse
|
3
|
Titus T, Vishnu EK, Garai A, Dutta SK, Sandeep K, Shelke A, Ajithkumar TG, Shaji A, Pradhan N, Thomas KG. Biexciton Emission in CsPbBr 3 Nanocrystals: Polar Facet Matters. NANO LETTERS 2024; 24:10434-10442. [PMID: 39141763 DOI: 10.1021/acs.nanolett.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The metal halide perovskite nanocrystals exhibit a remarkable tolerance to midgap defect states, resulting in high photoluminescence quantum yields. However, the potential of these nanocrystals for applications in display devices is hindered by the suppression of biexcitonic emission due to various Auger recombination processes. By adopting single-particle photoluminescence spectroscopy, herein, we establish that the biexcitonic quantum efficiency increases with the increase in the number of facets on cesium lead bromide perovskite nanocrystals, progressing from cube to rhombic dodecahedron to rhombicuboctahedron nanostructures. The observed enhancement is attributed mainly to an increase in their surface polarity as the number of facets increases, which reduces the Coulomb interaction of charge carriers, thereby suppressing Auger recombination. Moreover, Auger recombination rate constants obtained from the time-gated photon correlation studies exhibited a discernible decrease as the number of facets increased. These findings underscore the significance of facet engineering in fine-tuning biexciton emission in metal halide perovskite nanocrystals.
Collapse
Affiliation(s)
- Timi Titus
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695551, India
- Centre for Advanced Materials Research with International Engagement (CAMRIE), Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695551, India
| | - E Krishnan Vishnu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695551, India
| | - Arghyadeep Garai
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Sumit Kumar Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Kuttysankaran Sandeep
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695551, India
- Centre for Advanced Materials Research with International Engagement (CAMRIE), Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695551, India
| | - Ankita Shelke
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Thalasseril G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Anil Shaji
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695551, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695551, India
- Centre for Advanced Materials Research with International Engagement (CAMRIE), Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, 695551, India
| |
Collapse
|
4
|
Singha PK, Mukhopadhyay T, Tarif E, Ali F, Datta A. Competition among recombination pathways in single FAPbBr3 nanocrystals. J Chem Phys 2024; 161:054704. [PMID: 39087543 DOI: 10.1063/5.0205940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Single particle level microscopy of immobilized FAPbBr3 nanocrystals (NCs) has elucidated the involvement of different processes in their photoluminescence (PL) intermittency. Four different blinking patterns are observed in the data from more than 100 NCs. The dependence of PL decays on PL intensities brought out in fluorescence lifetime intensity distribution (FLID) plots is rationalized by the interplay of exciton- and trion-mediated recombinations along with hot carrier (HC) trapping. The high intensity-long lifetime component is attributed to neutral exciton recombination, the low intensity-short lifetime component is attributed to trion assisted recombination, and the low intensity-long lifetime component is attributed to hot carrier recombination. Change-point analysis (CPA) of the PL blinking data reveals the involvement of multiple intermediate states. Truncated power law distribution is found to be more appropriate than power law and lognormal distribution for on and off events. Probability distributions of PL trajectories of single NCs are obtained for two different excitation fluences and wavelengths (λex = 400, 440 nm). Trapping rate (kT) prevails at higher power densities for both excitation wavelengths. From a careful analysis of the FLID and probability distributions, it is concluded that there is competition between the HC and trion assisted blinking pathways and that the contribution of these mechanisms varies with excitation wavelength as well as fluence.
Collapse
Affiliation(s)
- Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tamoghna Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ejaj Tarif
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Fariyad Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Chandra S, Mustafa MA, Ghadir K, Bansal P, Deorari M, Alhameedi DY, Alubiady MHS, Al-Ani AM, Rab SO, Jumaa SS, Abosaoda MK. Synthesis, characterization, and practical applications of perovskite quantum dots: recent update. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03309-y. [PMID: 39073420 DOI: 10.1007/s00210-024-03309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
This review paper provides an in-depth analysis of Perovskite quantum dots (PQDs), a class of nanomaterials with unique optical and electronic properties that hold immense potential for various technological applications. The paper delves into the structural characteristics, synthesis methods, and characterization techniques of PQDs, highlighting their distinct advantages over other Quantum Dots (QDs). Various applications of PQDs in fields such as solar cells, LEDs, bioimaging, photocatalysis, and sensors are discussed, showcasing their versatility and promising capabilities. The ongoing advancements in PQD research and development point towards a bright future for these nanostructures in revolutionizing diverse industries and technologies.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Electrical Engineering, GLA University, Mathura, 281406, India
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq.
| | - Kamil Ghadir
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dheyaa Yahaia Alhameedi
- Department of Anesthesia, College of Health & Medical Technology, Sawa University, Almuthana, Iraq
| | | | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Salih Jumaa
- Department of Medical Engineering, National University of Science and Technology, Dhi Qar, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
6
|
Fang Y, Yang H, Hou Y, Li W, Shen Y, Liu S, Zhang Y. Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides. Nat Commun 2024; 15:3597. [PMID: 38678039 PMCID: PMC11519465 DOI: 10.1038/s41467-024-48011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Highly efficient interconversion of different types of energy plays a crucial role in both science and technology. Among them, electrochemiluminescence, an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool for bioassays. Nonetheless, the large differences in timescale among diverse charge-transfer pathways from picoseconds to seconds significantly limit the electrochemiluminescence efficiency and hamper their broad applications. Here, we report a timescale coordination strategy to improve the electrochemiluminescence efficiency of carbon nitrides by engineering shallow electron trap states via Au-N bond functionalization. Quantitative electrochemiluminescence kinetics measurements and theoretic calculations jointly disclose that Au-N bonds endow shallow electron trap states, which coordinate the timescale of the fast electron transfer in the bulk emitter and the slow redox reaction of co-reagent at diffusion layers. The shallow electron trap states ultimately accelerate the rate and kinetics of emissive electron-hole recombination, setting a new cathodic electrochemiluminescence efficiency record of carbon nitrides, and empowering a visual electrochemiluminescence sensor for nitrite ion, a typical environmental contaminant, with superior detection range and limit.
Collapse
Affiliation(s)
- Yanfeng Fang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Hong Yang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuhua Hou
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Wang Li
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China.
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Xue J, Fujitsuka M, Tachikawa T, Bao J, Majima T. Charge Trapping in Semiconductor Photocatalysts: A Time- and Space-Domain Perspective. J Am Chem Soc 2024; 146:8787-8799. [PMID: 38520348 DOI: 10.1021/jacs.3c14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Harnessing solar energy to produce value-added fuels and chemicals through photocatalysis techniques holds promise for establishing a sustainable and environmentally friendly energy economy. The intricate dynamics of photogenerated charge carriers lies at the core of the photocatalysis. The balance between charge trapping and band-edge recombination has a crucial influence on the activity of semiconductor photocatalysts. Consequently, the regulation of traps in photocatalysts becomes the key to optimizing their activities. Nevertheless, our comprehension of charge trapping, compared to that of well-studied charge recombination, remains somewhat limited. This limitation stems from the inherently heterogeneous nature of traps at both temporal and spatial scales, which renders the characterization of charge trapping a formidable challenge. Fortunately, recent advancements in both time-resolved spectroscopy and space-resolved microscopy have paved the way for considerable progress in the investigation and manipulation of charge trapping. In this Perspective, we focus on charge trapping in photocatalysts with the aim of establishing a direct link to their photocatalytic activities. To achieve this, we begin by elucidating the principles of advanced time-resolved spectroscopic techniques such as femtosecond time-resolved transient absorption spectroscopy and space-resolved microscopic methods, such as single-molecule fluorescence microscopy and surface photovoltage microscopy. Additionally, we provide an overview of noteworthy research endeavors dedicated to probing charge trapping using time- and space-resolved techniques. Our attention is then directed toward recent achievements in the manipulation of charge trapping in photocatalysts through defect engineering. Finally, we summarize this Perspective and discuss the future challenges and opportunities that lie ahead in the field.
Collapse
Affiliation(s)
- Jiawei Xue
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Tachikawa
- Department of Chemistry, Graduate School of Science and Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230029, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tetsuro Majima
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
8
|
Jo C, Kim D, Lee CL, Ko DK. Ultrafast photo-induced carrier dynamics of perovskite quantum dots during structural degradation. OPTICS EXPRESS 2023; 31:40352-40365. [PMID: 38041339 DOI: 10.1364/oe.504469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
In this study, the ultrafast photo-induced carrier dynamics of red-emitting PQDs during structural degradation was investigated using time-resolved transient absorption spectroscopy. The spectroscopic analysis revealed how the carrier dynamics varied when PQDs were exposed to a polar solvent. Three decay modes (carrier trapping, radiative carrier recombination and trap-assisted non-radiative recombination) were proposed to analyze the carrier dynamics of PQDs. The light-emitting property of PQDs is primarily influenced by radiative carrier recombination. This study demonstrates that structural degradation induced halide migration within PQDs and the formation of defects within the crystal lattice, leading to a proliferation of carrier trapping states. The increased trap states led to a reduction in carriers undergoing radiative carrier recombination. Additionally, PQDs degradation accelerated radiative carrier recombination, indicating a faster escape of carriers from excited states. Consequently, these factors hinder carriers remaining in excited states, leading to a decline in the light-emitting property of PQDs. Nevertheless, increasing an excitation fluence could reduce the carrier trapping mode and increase the radiative carrier recombination mode, suggesting a diminishment of the impact of carrier trapping. These findings offer a more comprehensive understanding of structural degradation of PQDs and can contribute to the development of PQDs with high structural stability.
Collapse
|
9
|
Manoj B, Rajan D, Thomas KG. InP quantum dots: Stoichiometry regulates carrier dynamics. J Chem Phys 2023; 158:2887769. [PMID: 37129142 DOI: 10.1063/5.0146484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
The optical properties of non-toxic indium phosphide (InP) quantum dots (QDs) are impinged by the existence of characteristic deep trap states. Several surface engineering strategies have been adopted to improve their optical quality, which has promoted the use of InP QDs for various technological applications. An antithetical approach involves the effective utilization of the deep trap states in InP QDs to modulate back electron transfer rates. Here, we explore the influence of the core-size of InP on their In-to-P stoichiometry and charge transfer dynamics when bound to an acceptor molecule, decyl viologen (DV2+). The mechanism of interaction of InP and DV2+ based on the quenching sphere model established the presence of (i) a 1:1 complex of DV2+ bound on InP and (ii) immobile quenchers in the quenching sphere, depending on the concentration of DV2+. While the forward electron transfer rates from photoexcited InP to bound DV2+ does not substantially vary with an increase in core size, the back electron transfer rates are found to be retarded. Findings from inductively coupled plasma-optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS) reveal that the In to P ratio is higher for QDs with larger core size, which further brings about increased carrier trapping and a decreased rate of charge recombination. Furthermore, long-lived charge-separated states in DV2+ bound to InP, extending to hundreds of milliseconds, are obtained by varying the number of DV2+ in the quenching sphere of the QDs.
Collapse
Affiliation(s)
- B Manoj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Devika Rajan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
10
|
Mukherjee S, Ghosh S, Biswas D, Ghosal M, De K, Mandal PK. Transforming exciton dynamics in perovskite nanocrystal through Mn doping. NANOSCALE 2023; 15:6947-6953. [PMID: 36974486 DOI: 10.1039/d3nr00241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zn-alloyed CsPb(Cl/Br)3 perovskite nanocrystals (PNCs) have been synthesized and used as a model system for Mn doping in order to understand the effect of Mn doping on exciton dynamics. While keeping the PL emission maximum and PLQY of both PNC samples nearly the same, the radiative decay rate of the host band decreases ∼6.5 times and the non-radiative decay rate increases ∼2.5 times upon Mn doping. Unlike reports in the literature in which the dopant emission decreases to near-zero, in the present case we observe ∼5.5-fold enhancement of the integrated PL intensity of the dopant emission when the temperature decreases from 290 K to 190 K. Interestingly, the FWHM of the host PL emission band increases with a decrease in temperature from 290 K to 190 K. A higher value of phonon energy in PNC2 (58 ± 2 meV) in comparison to CsPbBr3 has been noted. The low magnitude of the Huang-Rhys factor indicates less electron phonon coupling for the Mn-doped PNC system. Temperature-dependent dopant PL decay exhibits biexponential decay behaviour with time constants τ1 = 450-540 μs and τ2 = 1.1-1.2 ms. With a decrease in temperature from 290 K to 190 K, the amplitude of the faster component decreases from 80% to 60%; concomitantly, the amplitude of the slower component increases from 20% to 40%. Ultrasensitive single-particle spectroscopic analyses reveal that, although the probability density distributions (PDDs) of the durations of both ON and OFF events of PNC1 could be fitted with a truncated inverse power law (TIPL), however, for PNC2, both PDDs could be fitted with an inverse power law (IPL). A comparatively lower value of the power law exponent mON indicates a higher probability of longer ON events for PNC1 than for PNC2. Truncation in the PDDs of both ON and OFF events has been observed for PNC1, but not in the PDDs of either ON or OFF events for PNC2. The presence of shallow trap states is responsible for the truncation for PNC1, whereas the presence of deep dopant states does not allow truncation in the host PL emission of PNC2. All these observations clearly demonstrate that Mn doping transforms the host PL exciton dynamics for Zn-alloyed Mn-doped CsPb(Cl/Br)3 PNCs very significantly.
Collapse
Affiliation(s)
- Soumen Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Mainak Ghosal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Kheyali De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
11
|
Barua P, Hwang I. Bulk Perovskite Crystal Properties Determined by Heterogeneous Nucleation and Growth. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2110. [PMID: 36903225 PMCID: PMC10004368 DOI: 10.3390/ma16052110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In metal halide perovskites, charge transport in the bulk of the films is influenced by trapping and release and nonradiative recombination at ionic and crystal defects. Thus, mitigating the formation of defects during the synthesis process of perovskites from precursors is required for better device performance. An in-depth understanding of the nucleation and growth mechanisms of perovskite layers is crucial for the successful solution processing of organic-inorganic perovskite thin films for optoelectronic applications. In particular, heterogeneous nucleation, which occurs at the interface, must be understood in detail, as it has an effect on the bulk properties of perovskites. This review presents a detailed discussion on the controlled nucleation and growth kinetics of interfacial perovskite crystal growth. Heterogeneous nucleation kinetics can be controlled by modifying the perovskite solution and the interfacial properties of perovskites adjacent to the underlaying layer and to the air interface. As factors influencing the nucleation kinetics, the effects of surface energy, interfacial engineering, polymer additives, solution concentration, antisolvents, and temperature are discussed. The importance of the nucleation and crystal growth of single-crystal, nanocrystal, and quasi-two-dimensional perovskites is also discussed with respect to the crystallographic orientation.
Collapse
|
12
|
Ghosh S, Mukherjee S, Mandal S, De CK, Mardanya S, Saha A, Mandal PK. Beneficial Intrinsic Hole Trapping and Its Amplitude Variation in a Highly Photoluminescent Toxic-Metal-Free Quantum Dot. J Phys Chem Lett 2023; 14:260-266. [PMID: 36595225 DOI: 10.1021/acs.jpclett.2c03373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intrinsic hole trapping as well as hole detrapping have not been observed for any quantum dot (QD) or perovskite nanocrystal (PNC) system. Moreover, amplitude variation of intrinsic hole trapping (or detrapping) has not been reported at all for any QD or PNC system. However, for a CuInS2-based core/alloy-shell (CAS) QD system, (a) both intrinsic hole trapping and detrapping have been observed and (b) very significant amplitude variations of hole trapping (∼16 to ∼42%) and hole detrapping (∼44 to 23%) have been observed. Unlike detrimental electron trapping, hole trapping has been shown to be beneficial, having a direct correlation toward increasing PLQY to 96%. Simultaneous electron and hole trapping has been shown to be quite beneficial for the CuInS2-based CAS QD system leading to the longest ON time (∼130 s) for which a nontoxic metal-based QD remains only in the ON-state without blinking.
Collapse
|
13
|
Narra S, Bhosale SS, Kharade AK, Chang SM, Diau EWG. Retarded Charge Recombination to Enhance Photocatalytic Performance for Water-Free CO 2 Reduction Using Perovskite Nanocrystals as Photocatalysts. J Phys Chem Lett 2022; 13:9134-9139. [PMID: 36165800 DOI: 10.1021/acs.jpclett.2c02393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Femtosecond transient absorption spectral (TAS) investigations were performed to understand the carrier relaxation mechanism for perovskite nanocrystals Cs1-xFAxPbBr3 (CF, x = 0.45) and CsPbBr3 (CS), which served as efficient photocatalysts for splitting of CO2 into CO and O2 in the absence of water. Upon light irradiation for 12 h, formation of deep trap states was found for both CS and CF samples with spectral characteristics of the TAS photobleach (PB) band showing a long spectral tail extending to the long wavelength region. The charge recombination rates at the shallow surface states, bulk states, and deep-trapped surface state were found to be significantly retarded for the CF sample than for the CS sample, in agreement with the photocatalytic performances for CO product yields of the CF catalyst being greater by a factor of 3 compared to those of the CS catalyst.
Collapse
Affiliation(s)
- Sudhakar Narra
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan
| | - Sumit S Bhosale
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu300093, Taiwan
| | - Aparna K Kharade
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan
| | - Sue-Min Chang
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan
| |
Collapse
|
14
|
Huang X, Matsushita Y, Sun HT, Shirahata N. Impact of bismuth-doping on enhanced radiative recombination in lead-free double-perovskite nanocrystals. NANOSCALE ADVANCES 2022; 4:3091-3100. [PMID: 36133518 PMCID: PMC9419852 DOI: 10.1039/d2na00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 06/16/2023]
Abstract
Lead-free double-perovskite nanocrystals (NCs) have received considerable attention as promising candidates for environmentally friendly optical applications. Furthermore, double-perovskite nanostructures are known to be physically stable compared to most other inorganic halide perovskites, with a generic chemical formula of ABX3 (e.g., A = Cs+; B = Sn2+ or Ge2+; X = Cl-, Br-, I-, or their combination). However, relevant experimental studies on the photophysical properties are still insufficient for Pb-free double-perovskite NCs. Herein, we synthesized Cs2Ag0.65Na0.35InCl6 NCs doped with bismuth (Bi3+) ions and investigated their photophysical properties to reveal the role of the dopant on the enhanced photoemission properties. Specifically, it was found that the photoluminescence quantum yield (PLQY) increased up to 33.2% by 2% Bi-doping. The optical bandgap of the NCs decreased from 3.47 eV to 3.41 eV as the amount of the dopant increased from 2% to 15%. To find out the effect of Bi-doping, the temperature-dependent PL properties of the undoped and doped NCs were investigated by utilizing steady-state and time-resolved PL spectroscopy. With increasing the temperature from 20 K to 300 K, the PL intensities of the doped NCs decreased slower than the undoped ones. The correlated average PL lifetimes of both the bismuth-doped and undoped NCs decreased with increasing the temperature. The experimental results revealed that all the NC samples showed thermal quenching with the temperature increasing, and the PL quenching was suppressed in bismuth-doped NCs.
Collapse
Affiliation(s)
- Xiaoyu Huang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo 060-0814 Japan
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS) Ibaraki 305-0047 Japan
| | - Hong-Tao Sun
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Ibaraki 305-0044 Japan
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo 060-0814 Japan
- Department of Physics, Chuo University Tokyo 112-8551 Japan
| |
Collapse
|
15
|
Roy D, De CK, Ghosh S, Mukherjee S, Mandal S, Mandal PK. Ultrafast dynamics and ultrasensitive single particle spectroscopy of optically robust core/alloy shell semiconductor quantum dots. Phys Chem Chem Phys 2022; 24:8578-8590. [PMID: 35355030 DOI: 10.1039/d1cp05780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A "one-pot one-step" synthesis method of Core/Alloy Shell (CAS) quantum dots (QDs) offers the scope of large scale synthesis in a less time consuming, more economical, highly reproducible and high-throughput manner in comparison to "multi-pot multi-step" synthesis for Core/Shell (CS) QDs. Rapid initial nucleation, and smooth & uniform shell growth lead to the formation of a compositionally-gradient alloyed hetero-structure with very significantly reduced interfacial trap density in CAS QDs. Thus, interfacial strain gets reduced in a much smoother manner leading to enhanced confinement for the photo-generated charge carriers in CAS QDs. Convincing proof of alloy-shelling for a CAS QD has been provided from HRTEM images at the single particle level. The band gap could be tuned as a function of composition, temperature, reactivity difference of precursors, etc. and a high PLQY and improved photochemical stability could be achieved for a small sized CAS QD. From the ultrafast exciton dynamics in CdSe and InP CAS QDs, it has been shown that (a) the hot exciton thermalization/relaxation happens in <500 fs, (b) hot electron trapping dynamics occurs within a ∼1 ps time scale, (c) band edge exciton trapping occurs within a 10-25 ps timescale and (d) for CdSe CAS QDs the hot hole gets trapped in about 35 ps. From fast PL decay dynamics, it has been shown that the amplitude of the intermediate time constant can be correlated with the PLQY. A model has been provided to understand these ultrafast to fast exciton dynamical processes. At the ultrasensitive single particle level, unlike CS QDs, CdSe CAS QDs have been shown to exhibit (a) constancy of PLmax (i.e. no bluing) and (b) constancy of PL intensity (i.e. no bleaching) of the single CAS QDs for continuous irradiation for one hour under an air atmosphere. Thus, CAS QDs hold the promise of being a superior optical probe in comparison to CS QDs both at the ensemble and at the single particle level, leading to enhanced flexibility of the CAS QDs towards designing and developing next generation application devices.
Collapse
Affiliation(s)
- Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Chayan K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Soumen Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Saptarshi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India. .,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
16
|
Roy D, Ghosh S, De CK, Mukherjee S, Mandal S, Mandal PK. Excitation-Energy-Dependent Photoluminescence Quantum Yield is Inherent to Optically Robust Core/Alloy-Shell Quantum Dots in a Vast Energy Landscape. J Phys Chem Lett 2022; 13:2404-2417. [PMID: 35257586 DOI: 10.1021/acs.jpclett.2c00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The importance of alloy-shelling in optically robust Core/Alloy-Shell (CAS) QDs has been described from structural and energetic aspects. Unlike fluorescent dyes, both Core/Shell (CS) and CAS QDs exhibit excitation-energy-dependent photoluminescence quantum yield (PLQY). For both CdSe and InP CAS QDs (with metal- and nonmetal-based alloy-shelling, respectively), with increasing excitation energy, (a) the ultrafast rise-time or relaxation-time to the band-edge increases and (b) the magnitude of the normalized bleach signal decreases. Ultrasensitive single-particle spectroscopic investigation results showed that with decreasing excitation energy, (a) the fraction of ON events increases, (b) the ratio of exciton-detrapping rate/trapping rate increases, and (c) the extent of beneficial hole trapping increases. A relative decrease in PLQY with increasing excitation energy is much less pronounced in CAS QDs than in CS QDs. Unless trap states are removed completely especially in the higher-energy landscape, PLQY will remain inherently dependent on excitation energy for QDs in the vast energy landscape. When reporting the PLQY of QDs, the magnitude of the excitation energy must be mentioned.
Collapse
Affiliation(s)
- Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Chayan K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Soumen Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Saptarshi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Prasun K Mandal
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| |
Collapse
|
17
|
Goswami T, Bhatt H, Yadav DK, Saha R, Babu KJ, Ghosh HN. Probing ultrafast hot charge carrier migration in MoS 2 embedded CdS nanorods. J Chem Phys 2022; 156:034704. [PMID: 35065550 DOI: 10.1063/5.0074155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Efficient utilization of hot charge carriers is of utmost benefit for a semiconductor-based optoelectronic device. Herein, a one-dimensional (1D)/two-dimensional (2D) heterojunction was fabricated in the form of CdS/MoS2 nanorod/nanosheet composite and migration of hot charge carriers was being investigated with the help of transient absorption (TA) spectroscopy. The band alignment was such that both the electrons and holes in the CdS region tend to migrate into the MoS2 region following photoexcitation. The composite system is composed of optical signatures of both CdS and MoS2, with the dominance of CdS nanorods. In addition, the TA signal of MoS2 is substantially enhanced in the heterosystem at the cost of the diminished CdS signal, confirming the migration of charge carrier population from CdS to MoS2. This migration phenomenon was dominated by the hot carrier transfer. The hot carriers in the high energy states of CdS are preferentially migrated into the MoS2 states rather than being cooled to the band edge. The hot carrier transfer time for a 400 nm pump excitation was calculated to be 0.21 ps. This is much faster than the band edge electron transfer process, occurring at 2.0 ps time scale. We found that these migration processes are very much dependent on the applied pump photon energy. Higher energy pump photons are more efficient in the hot carrier transfer process and place these hot carriers in the higher energy states of MoS2, further extending charge carrier separation. This detailed spectroscopic investigation would help in the fabrication of better 1D/2D heterojunctions and advance the optoelectronic field.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Dharmendra Kumar Yadav
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Ramchandra Saha
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - K Justice Babu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
18
|
Goswami T, Bhatt H, Yadav DK, Ghosh HN. Interfacing g-C 3N 4 Nanosheets with CdS Nanorods for Enhanced Photocatalytic Hydrogen Evolution: An Ultrafast Investigation. J Phys Chem B 2022; 126:572-580. [PMID: 34994569 DOI: 10.1021/acs.jpcb.1c10336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effective separation of electron-hole and utilization of hot charge carriers are known to be the most important factors influencing the activity of a good photocatalyst. Herein, we developed a 1D/2D heterojunction in the composite of CdS nanorod and g-C3N4 (CN) nanosheets. These two form a quasi-type-II junction at the heterointerface. The photoexcited electrons are supposed to be transferred from CN to CdS, as observed from the enhanced photoluminescence of CdS. Transient studies revealed an absolute dominance of CdS exciton formation even in the composite system, although the dynamics were substantially modified in the presence of CN. The rise time of CdS band edge excitons were increased in the composite material, owing to the migration of hot electrons from CN to CdS. The hot electron transfer time was found to be ∼0.5 ps (rate constant ∼1.98 ps-1). The excitons decay in a much slower manner than that of the pristine CdS, confirming enhanced electron population in CdS. This migration of charge carriers was found to be immensely dependent on the applied excitation photon energy. Efficient migration of charge carriers leads to enhanced photocatalytic activity in the composite and an increased evolution of H2 evolution rate was witnessed. This detailed spectroscopic study toward the mechanistic pathway of the catalytic activity of an 1D/2D heterocomposite would be immensely helpful in fabricating many other effective heterojunctions which will advance the catalysis research.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Dharmendra Kumar Yadav
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.,Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
19
|
Maddalena F, Witkowski ME, Makowski M, Bachiri A, Mahler B, Wong YC, Chua CYE, Lee JX, Drozdowski W, Springham SV, Dujardin C, Birowosuto MD, Dang C. Stable and Bright Commercial CsPbBr 3 Quantum Dot-Resin Layers for Apparent X-ray Imaging Screen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59450-59459. [PMID: 34855346 DOI: 10.1021/acsami.1c16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CsPbBr3 quantum dots (QDs) have recently gained much interest due to their excellent optical and scintillation properties and their potential for X-ray imaging applications. In this study, we blended CsPbBr3 QDs with resin at different QD concentrations to achieve thick films and to protect the CsPbBr3 QDs from environmental moisture. Then, their scintillation properties are investigated and compared to the traditional commercial scintillators, CsI:Tl microcolumns, and Gadox layers. The CsPbBr3 QD-resin sheets show a high light yield of up to 21 500 photons/MeV at room temperature and a relatively small variation in light yield across a wide temperature range. In addition, the CsPbBr3 QD-resin sheets feature a small scintillation afterglow. The CsPbBr3 QD-resin sheets show a negligible trap density for the concentration below 50% weight, indicating that traps might arise from the aggregation of the QDs. The CsPbBr3 QD-resin sheets are also very stable at low irradiation intensities and relatively stable at higher intensities, with higher CsPbBr3 QD concentrations being more stable. Gamma-ray-excited-time-resolved emission measurements at 662 keV showed that the CsPbBr3 QD-resin sheets have an average scintillation decay time between 108 and 176 ns, which are still 10 000 and 6000 times faster than CsI:Tl and Gadox, respectively. Imaging tests show that the CsPbBr3 QD-resin sheets have a mean transfer function of 50% at 2 lp/mm and 20% at 4 lp/mm, comparable to that of commercial Gadox layers. This feature makes CsPbBr3 QD-resin sheets a good candidate for the low-cost, flexible X-ray imaging screens and γ-ray applications.
Collapse
Affiliation(s)
- Francesco Maddalena
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore
| | - Marcin E Witkowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Michal Makowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Abdellah Bachiri
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Benoit Mahler
- Universitéé de Lyon, Université Claude Bernard, Lyon 1, CNRS, Institut Lumière Matière UMR5306, Villeurbanne F-69622, France
| | - Ying-Chieh Wong
- Nanolumi, 22 Boon Lay Way #01-61, Tradehub 21, 609968 Singapore
| | | | - Jia Xing Lee
- Nanolumi, 22 Boon Lay Way #01-61, Tradehub 21, 609968 Singapore
| | - Winicjusz Drozdowski
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
| | - Stuart Victor Springham
- Natural Sciences and Science Education, National Institute of Education, 1 Nanyang Walk, 637616 Singapore
| | - Christophe Dujardin
- Universitéé de Lyon, Université Claude Bernard, Lyon 1, CNRS, Institut Lumière Matière UMR5306, Villeurbanne F-69622, France
| | - Muhammad Danang Birowosuto
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore
| | - Cuong Dang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore
| |
Collapse
|
20
|
Mandal S, Ghosh S, Mukherjee S, Roy D, De CK, Mukhuti K, Mandal PK. Near-Ergodic CsPbBr 3 Perovskite Nanocrystal with Minimal Statistical Aging. J Phys Chem Lett 2021; 12:10169-10174. [PMID: 34643402 DOI: 10.1021/acs.jpclett.1c02326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optical robustness, uniformity, ergodicity, statistical aging, etc. dictate the applicability of nanocrystals. Based on a series of multimodal statistical analyses such as the Kolmogorov-Smirnov test, Lévy statistics, etc., we demonstrate that for CsPbBr3 perovskite nanocrystals (PNCs): (a) the extent of heterogeneity in the quality and associated physical processes is minimal; (b) the optical robustness is very high, and (c) indeed, a single PNC can depict optical behavior of its ensemble. In addition, toward prospective applications, an optically robust CsPbBr3 PNC exhibits (i) near-ergodicity and (ii) minimal statistical aging, which are extremely vital and complementary to its high defect tolerance.
Collapse
Affiliation(s)
- Saptarshi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Soumen Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Chayan K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Kingshuk Mukhuti
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| |
Collapse
|
21
|
Mishra K, Acharjee D, Das A, Ghosh S. Femtosecond Upconversion Study of Interfacial Electron Transfer from Photoexcited CsPbBr 3 Perovskite Nanocrystal to Rhodamine 6G. J Phys Chem B 2021; 125:11017-11025. [PMID: 34583511 DOI: 10.1021/acs.jpcb.1c05354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoinduced electron transfer (PET) from an excited-state CsPbBr3 nanocrystal (NC) to rhodamine 6G (r6G) is studied in toluene using different fluorescence-based techniques. Because of weak solubility of r6G in toluene, excess r6G molecules adsorb at NC surface which result in a much slower rotational diffusion time scale of r6G in the presence of NCs. Study of intrinsic PET benefits from the soft molecular interactions leading to donor (NC)-acceptor (r6G) complex formation, where solvent diffusion parameters would not play any role in the PET kinetics. Femtosecond transients of NCs are nicely fit to a Poisson expression originally proposed by Tachiya. Conclusive fittings to the temperature dependence quenching data reveal two interesting observations: (1) Even though the average number of surface trap state in a NC does not change with temperature (5-60 °C), the trap-state-induced quenching time scale is accelerated with increase in temperature, pointing toward a more efficient trapping at higher temperature. (ii) In the presence of r6G, a fast (∼150 ps per r6G molecule) interfacial PET time scale is observed, which remains unaffected by temperature (5-60 °C). Our findings demonstrate that even a simple "perovskite NC-electron acceptor" composite like that in the present study can ensure a rapid interfacial charge separation. Such information will help us to realize the actual potential of perovskites NCs in their real applications.
Collapse
Affiliation(s)
- Krishna Mishra
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Khurda, Odisha 752050, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Khurda, Odisha 752050, India
| | - Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Khurda, Odisha 752050, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Jatni, Khurda, Odisha 752050, India
| |
Collapse
|
22
|
Morrell MV, Pickett A, Bhattacharya P, Guha S, Xing Y. Inorganic Ruddlesden-Popper Faults in Cesium Lead Bromide Perovskite Nanocrystals for Enhanced Optoelectronic Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38579-38585. [PMID: 34358425 DOI: 10.1021/acsami.1c06350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While the layered hybrid Ruddlesden-Popper (RP) halide perovskites have already established themselves as the frontrunners among the candidates in optoelectronics, their all-inorganic counterparts remain least explored in the RP-type perovskite family. Herein, we study and compare the optoelectronic properties of all-inorganic CsPbBr3 perovskite nanocrystals (PNCs) with and without RP planar faults. We find that the RP-CsPbBr3 PNCs possess both higher exciton binding energy and longer exciton lifetimes. The former is ascribed to a quantum confinement effect in the PNCs induced by the RP faults. The latter is attributed to a spatial electron-hole separation across the RP faults. A striking difference is found in the up-conversion photoluminescence response in the two types of CsPbBr3 PNCs. For the first time, all-inorganic RP-CsPbBr3 PNCs are tested in light-emitting devices and shown to significantly outperform the non-RP CsPbBr3 PNCs.
Collapse
Affiliation(s)
- Maria V Morrell
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Alec Pickett
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Payal Bhattacharya
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Suchismita Guha
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Yangchuan Xing
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
23
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
24
|
Zhang Z, Zhang S, Gushchina I, Guo T, Brennan MC, Pavlovetc IM, Grusenmeyer TA, Kuno M. Excitation Energy Dependence of Semiconductor Nanocrystal Emission Quantum Yields. J Phys Chem Lett 2021; 12:4024-4031. [PMID: 33880921 DOI: 10.1021/acs.jpclett.1c00811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate measurements of semiconductor nanocrystal (NC) emission quantum yields (QYs) are critical to condensed phase optical refrigeration. Of particular relevance to measuring NC QYs is a longstanding debate as to whether an excitation energy-dependent (EED) QY exists. Various reports indicate existence of NC EED QYs, suggesting that the phenomenon is linked to specific ensemble properties. We therefore investigate here the existence of EED QYs in two NC systems (CsPbBr3 and CdSe) that are possible candidates for use in optical refrigeration. The influence of NC size, size-distribution, surface ligand, and as-made emission QYs are investigated. Existence of EED QYs is assessed using two approaches (an absolute approach using an integrating sphere and a relative approach involving excitation spectroscopy). Altogether, our results show no evidence of EED QYs across samples. This suggests that parameters beyond those mentioned above are responsible for observations of NC EED QYs.
Collapse
Affiliation(s)
- Zhuoming Zhang
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
| | - Shubin Zhang
- University of Notre Dame, Department of Physics, Notre Dame, Indiana 46556, United States
| | - Irina Gushchina
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
| | - Tianle Guo
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
| | - Michael C Brennan
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Ilia M Pavlovetc
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
| | - Tod A Grusenmeyer
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Masaru Kuno
- University of Notre Dame, Department of Chemistry and Biochemistry, Notre Dame, Indiana 46556, United States
- University of Notre Dame, Department of Physics, Notre Dame, Indiana 46556, United States
| |
Collapse
|
25
|
Mandal S, Ghosh S, Mukherjee S, De CK, Roy D, Samanta T, Mandal PK. Unravelling halide-dependent charge carrier dynamics in CsPb(Br/Cl) 3 perovskite nanocrystals. NANOSCALE 2021; 13:3654-3661. [PMID: 33538737 DOI: 10.1039/d0nr08428j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With an increasing bromide content in CsPb(Br/Cl)3 perovskite nanocrystals (PNCs), the steady state photoluminescence quantum yield value increases from 28% to 50% to 76%. Ultrafast transient absorption analyses reveal that the normalized band edge population increases more than two-fold on excitation at the band edge with increasing bromide content, and the hot exciton trapping time increases from 450 fs to 520 fs to 700 fs with increasing bromide content. Ultrasensitive single particle spectroscopic analyses reveal that the peak of the ON fraction distribution increases from 0.65 to 0.75 to 0.85 with increasing bromide content. More specifically, the percentage of PNCs with the ON fraction >75% increases four fold from 24% to 50% to 98% with increasing bromide content. Moreover, the ratio of the detrapping rate and trapping rate increases more than 25 fold with an increase in bromide content, signifying the excitons remaining in the trap state for a smaller time with increasing bromide content. In order to standardize the measurement and analyses, all these three PNCs have the same size and shape, and all the excitations have been made at the same energy above the band edge for all three PNCs and for both ultrafast transient absorption and ultrasensitive single particle measurements.
Collapse
Affiliation(s)
- Saptarshi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Soumen Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Chayan K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Tridib Samanta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246 and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India-741246.
| |
Collapse
|
26
|
Ghosh S, Mandal S, Mukherjee S, De CK, Samanta T, Mandal M, Roy D, Mandal PK. Near-Unity Photoluminescence Quantum Yield and Highly Suppressed Blinking in a Toxic-Metal-Free Quantum Dot. J Phys Chem Lett 2021; 12:1426-1431. [PMID: 33522828 DOI: 10.1021/acs.jpclett.0c03519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is no literature report of simultaneously achieving near-unity PLQY (ensemble level) and highly suppressed blinking (ultrasensitive single-particle spectroscopy (SPS) level) in a toxic-metal-free QD. In this Letter we report accomplishing near-unity PLQY (96%) and highly suppressed blinking (>80% ON fraction) in a toxic-metal-free CuInS2/ZnSeS Core/Alloy-Shell (CAS) QD. In addition, (i) gigantic enhancement of PLQY (from 15% (Core) to 96% (CAS QD)), (ii) ultrahigh stability over 1 year without significant reduction of PLQY at the ensemble level, (iii) high magnitude (nearly 3 times) of electron detrapping/trapping rate, and (iv) very long ON duration (∼2 min) without blinking at the SPS level enable this ultrasmall (∼3.3 nm) CAS QD to be quite suitable for single-particle tracking/bioimaging. A model explaining all these excellent optical properties has been provided. This ultrabright CAS QD has been successfully utilized toward fabrication of low-cost microcontroller-based stable and bright yellow and white QD-LEDs.
Collapse
|
27
|
Du Y, Wan S, Pan Y, Xie M, Ding M, Hong D, Tian Y. Deactivation/Activation of Quenching Defects in CH 3NH 3PbI 3 Perovskite by Direct Electron Injection/Extraction. J Phys Chem Lett 2021; 12:773-780. [PMID: 33410686 DOI: 10.1021/acs.jpclett.0c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organometal halide perovskites (OMHPs) have emerged as advisible materials for application in optoelectronic devices over the past decade. However, a variety of complex slow responses in OMHPs under an external electric field have been observed, and the mechanisms for these responses remain a topic of intense debate. In this work, with an external voltage applied to the CH3NH3PbI3 crystal, reversible photoluminescence (PL) enhancement and quenching behaviors respectively near the anode and the cathode were observed under wide-field fluorescence microscopy. Further experiments attribute the reversible PL enhancing responses to the electron injection effect increasing the radiative recombination, while PL quenching was attributed to be due to the electron extraction effect increasing the nonradiative recombination. The control of PL by external applied voltage indicates brilliant carrier mobility in the CH3NH3PbI3 crystal and also reminds us to focus on the effect of hole/electron injection on the materials which may limit the performance of perovskite-based optoelectronic devices.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sushu Wan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mingyi Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Daocheng Hong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
28
|
Chen W, Gan Z, Green MA, Jia B, Wen X. Revealing Dynamic Effects of Mobile Ions in Halide Perovskite Solar Cells Using Time-Resolved Microspectroscopy. SMALL METHODS 2021; 5:e2000731. [PMID: 34927806 DOI: 10.1002/smtd.202000731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Indexed: 06/14/2023]
Abstract
Halide perovskites are promising candidate materials for the next generation high-efficiency optoelectronic devices. Since perovskites are electronic-ionic mixed conductors, ion dynamics have a critical impact on the performance and stability of perovskite-based applications. However, comprehensively understanding ionic dynamics is challenging, particularly on nanoscale imaging of ionic dynamics in perovskites. In this review, mobile ion dynamics in halide perovskites investigated via luminescence spectroscopy combined with confocal microscopy are discussed, including mobile ion induced fluorescence quenching, phase segregation in mixed halide hybrid perovskite, and mobile ion accumulation at the interface in perovskite devices. Steady-state and time-resolved luminescence imaging techniques, combined with confocal microscopy, are unique tools for probing ionic dynamics in perovskites, providing invaluable insights on ionic dynamics in nanoscale resolution, along with a wide temporal range from picoseconds to hours. The works in this review are not only for understanding mobile ions to improve the design of perovskite-based devices but also foster the development of microspectroscopic methodologies in a broader solid-state physics context of investigating ionic transports in polycrystalline materials.
Collapse
Affiliation(s)
- Weijian Chen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Kensington, NSW, 2052, Australia
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Martin A Green
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Kensington, NSW, 2052, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|