1
|
Stolarska MA, Rammohan AR. On the significance of membrane unfolding in mechanosensitive cell spreading: Its individual and synergistic effects. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2408-2438. [PMID: 36899540 DOI: 10.3934/mbe.2023113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mechanosensitivity of cell spread area to substrate stiffness has been established both through experiments and different types of mathematical models of varying complexity including both the mechanics and biochemical reactions in the cell. What has not been addressed in previous mathematical models is the role of cell membrane dynamics on cell spreading, and an investigation of this issue is the goal of this work. We start with a simple mechanical model of cell spreading on a deformable substrate and progressively layer mechanisms to account for the traction dependent growth of focal adhesions, focal adhesion induced actin polymerization, membrane unfolding/exocytosis and contractility. This layering approach is intended to progressively help in understanding the role each mechanism plays in reproducing experimentally observed cell spread areas. To model membrane unfolding we introduce a novel approach based on defining an active rate of membrane deformation that is dependent on membrane tension. Our modeling approach allows us to show that tension-dependent membrane unfolding plays a critical role in achieving the large cell spread areas experimentally observed on stiff substrates. We also demonstrate that coupling between membrane unfolding and focal adhesion induced polymerization works synergistically to further enhance cell spread area sensitivity to substrate stiffness. This enhancement has to do with the fact that the peripheral velocity of spreading cells is associated with contributions from the different mechanisms by either enhancing the polymerization velocity at the leading edge or slowing down of the retrograde flow of actin within the cell. The temporal evolution of this balance in the model corresponds to the three-phase behavior observed experimentally during spreading. In the initial phase membrane unfolding is found to be particularly important.
Collapse
Affiliation(s)
- Magdalena A Stolarska
- Department of Mathematics, 2115 Summit Ave., University of St. Thomas, St. Paul, MN 55105, USA
| | - Aravind R Rammohan
- Corning Life Sciences, Corning Inc., 836 North St, Tewksbury, MA 01876, USA
| |
Collapse
|
2
|
Ruan H, Zou C, Xu Y, Fang X, Xia T, Shi Y. N-(3-Oxododecanoyl) Homoserine Lactone Is a Generalizable Plasma Membrane Lipid-Ordered Domain Modifier. Front Physiol 2022; 12:758458. [PMID: 35295163 PMCID: PMC8920551 DOI: 10.3389/fphys.2021.758458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
A mammalian plasma membrane is a structure on which several layers of complexity are built. The first order of complexity comes from the heterogeneity of lipid-ordered domains. Gangliosides in concert with cholesterol are preferentially packed on the outer leaflet and form lipid-ordered domains, commonly known as lipid rafts. The formation and dynamics of these domains impact nearly all membrane protein functions and are an intensely studied topic. However, tools suited for lipid domain alteration are extremely limited. Currently, methyl-β-cyclodextrin (MβCD) appears to be the most common way to disrupt lipid domains, which is believed to operate via cholesterol extraction. This significantly limits our ability in membrane biophysics research. Previously, we found that N-(3-oxo-dodecanoyl) homoserine lactone (3oc), a small signaling chemical produced by Pseudomonas aeruginosa, is highly efficient in altering lipid-ordered domains. In this study, 3oc was compared with MβCD in a series of biochemical, biophysical, and cell biological analyses. Per molarity, 3oc is more efficient than MβCD in domain alteration and appears to better retain membrane lipids after treatment. This finding will provide an essential reagent in membrane biophysics research.
Collapse
Affiliation(s)
- Hefei Ruan
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Chunlin Zou
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yanni Xu
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tie Xia
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yan Shi
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Nie J, Deng Y, Tian F, Shi S, Zheng P. Detection of weak non-covalent cation-π interactions in NGAL by single-molecule force spectroscopy. NANO RESEARCH 2022; 15:4251-4257. [PMID: 35574260 PMCID: PMC9077643 DOI: 10.1007/s12274-021-4065-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 05/14/2023]
Abstract
Cation-π interaction is an electrostatic interaction between a cation and an electron-rich arene. It plays an essential role in many biological systems as a vital driving force for protein folding, stability, and receptor-ligand interaction/recognition. To date, the discovery of most cation-π interactions in proteins relies on the statistical analyses of available three-dimensional (3D) protein structures and corresponding computational calculations. However, their experimental verification and quantification remain sparse at the molecular level, mainly due to the limited methods to dynamically measure such a weak non-covalent interaction in proteins. Here, we use atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of protein neutrophil gelatinase-associated lipocalin (also known as NGAL, siderocalin, lipocalin 2) that can bind iron through the cation-π interactions between its three cationic residues and the iron-binding tri-catechols. Based on a site-specific cysteine engineering and anchoring method, we first characterized the stability and unfolding pathways of apo-NGAL. Then, the same NGAL but bound with the iron-catechol complexes through the cation-π interactions as a holo-form was characterized. AFM measurements demonstrated stronger stabilities and kinetics of the holo-NGAL from two pulling sites, F122 and F133. Here, NGAL is stretched from the designed cysteine close to the cationic residues for a maximum unfolding effect. Thus, our work demonstrates high-precision detection of the weak cation-π interaction in NGAL. Electronic Supplementary Material Supplementary material (additional SDS-PAGE, UV-vis, protein sequences, and more experimental methods) is available in the online version of this article at 10.1007/s12274-021-4065-9.
Collapse
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| |
Collapse
|
4
|
Tian F, Lin TC, Wang L, Chen S, Chen X, Yiu PM, Tsui OKC, Chu J, Kiang CH, Park H. Mechanical Responses of Breast Cancer Cells to Substrates of Varying Stiffness Revealed by Single-Cell Measurements. J Phys Chem Lett 2020; 11:7643-7649. [PMID: 32794712 DOI: 10.1021/acs.jpclett.0c02065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How cancer cells respond to different mechanical environments remains elusive. Here, we investigated the tension in single focal adhesions of MDA-MB-231 (metastatic breast cancer cells) and MCF-10A (normal human breast cells) cells on substrates of varying stiffness using single-cell measurements. Tension measurements in single focal adhesions using an improved FRET-based tension sensor showed that the tension in focal adhesions of MDA-MB-231 cells increased on stiffer substrates while the tension in MCF-10A cells exhibited no apparent change against the substrate stiffness. Viscoelasticity measurements using magnetic tweezers showed that the power-law exponent of MDA-MB-231 cells decreased on stiffer substrates whereas MCF-10A cells had similar exponents throughout the whole stiffness, indicating that MDA-MB-231 cells change their viscoelasticity on stiffer substrates. Such changes in tension in focal adhesions and viscoelasticity against the substrate stiffness represent an adaptability of cancer cells in mechanical environments, which can facilitate the metastasis of cancer cells to different tissues.
Collapse
Affiliation(s)
- Fang Tian
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Tsung-Cheng Lin
- Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Pak Man Yiu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Ophelia K C Tsui
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ching-Hwa Kiang
- Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States
| | - Hyokeun Park
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|