1
|
Óvári L, Farkas AP, Palotás K, Vári G, Szenti I, Berkó A, Kiss J, Kónya Z. Hexagonal boron nitride on metal surfaces as a support and template. SURFACE SCIENCE REPORTS 2024; 79:100637. [DOI: 10.1016/j.surfrep.2024.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
2
|
Duan S, Tian G, Luo Y. Theoretical and computational methods for tip- and surface-enhanced Raman scattering. Chem Soc Rev 2024; 53:5083-5117. [PMID: 38596836 DOI: 10.1039/d3cs01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Raman spectroscopy is a versatile tool for acquiring molecular structure information. The incorporation of plasmonic fields has significantly enhanced the sensitivity and resolution of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman spectroscopy (TERS). The strong spatial confinement effect of plasmonic fields has challenged the conventional Raman theory, in which a plane wave approximation for the light has been adopted. In this review, we comprehensively survey the progress of a generalized theory for SERS and TERS in the framework of effective field Hamiltonian (EFH). With this approach, all characteristics of localized plasmonic fields can be well taken into account. By employing EFH, quantitative simulations at the first-principles level for state-of-the-art experimental observations have been achieved, revealing the underlying intrinsic physics in the measurements. The predictive power of EFH is demonstrated by several new phenomena generated from the intrinsic spatial, momentum, time, and energy structures of the localized plasmonic field. The corresponding experimental verifications are also carried out briefly. A comprehensive computational package for modeling of SERS and TERS at the first-principles level is introduced. Finally, we provide an outlook on the future developments of theory and experiments for SERS and TERS.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yi Luo
- Hefei National Research Center for Physical Science at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
3
|
Schrader T, Perlt E, Fritz T, Sierka M. Performance of Common Density Functionals for Excited States of Tetraphenyldibenzoperiflanthene. J Phys Chem A 2023; 127:3265-3273. [PMID: 37037005 DOI: 10.1021/acs.jpca.2c06715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Time-dependent density functional theory is the method of choice to efficiently calculate excitation spectra with the functional and basis set choice allowing one to compromise between accuracy and computational cost. In this work, the performance of different functionals as well as the second-order approximate coupled cluster singles and doubles model CC2 is evaluated by comparing the results to experimental results of the example molecule tetraphenyldibenzoperiflanthene (DBP). The choice of the functional has a significant impact on the calculated spectrum of DBP. The performance of a number of different functionals was evaluated, quantified, and, where possible, discussed. The best functional, tuned-CAM-B3LYP, is used to investigate DBP on a surface of hexagonal boron nitride (h-BN). The resulting spectrum shows excellent agreement with experimental results for a monolayer of DBP on h-BN.
Collapse
Affiliation(s)
- Tim Schrader
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eva Perlt
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Torsten Fritz
- Institute of Solid State Physics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marek Sierka
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Xiao J, Zhao W, Li L, Ma L, Tian G. Adsorption properties of a paracyclophane molecule on NaCl/Au surfaces: a first-principles study. Phys Chem Chem Phys 2023; 25:6060-6066. [PMID: 36751852 DOI: 10.1039/d2cp04745d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ultrathin insulating layers are commonly applied in scanning tunneling microscope (STM) measurements on molecular systems to preserve the intrinsic properties of a sample. We examine in the present work the adsorption properties of a double-decker 3,3-paracyclophane (PCP) molecule supported on Au surfaces with thin NaCl monolayers (MLs) as the decoupling spacer by using first-principles calculations. The interactions between the adsorbed molecule and the substrate were analyzed in terms of the adsorption energy, dispersion interactions, charge transfer, and molecular structure changes. The simulation results show that the presence of NaCl can significantly reduce the adsorption energy as well as the charge transfer between the molecule and the substrate. Detailed analysis of the differential charge density and partial charge density of states indicates that three MLs of NaCl are sufficient to decouple the molecule from the Au substrate with no significant changes in the adsorption properties of the PCP with the further increase of the thickness of the NaCl spacer. These results could be helpful for the application of the interesting double-decker molecules as functional single-molecule devices where the intrinsic molecular properties need to be preserved.
Collapse
Affiliation(s)
- Jiyin Xiao
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Wenjing Zhao
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Li Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Liang Ma
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| |
Collapse
|
5
|
Wang Y, Zhao W, Ma Z, Li L, Ma L, Tian G. Theoretical study on the vibrational structures in the conductance spectra of a weakly coupled polycyclic aromatic hydrocarbon molecule. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Mehler A, Néel N, Voloshina E, Dedkov Y, Kröger J. Second Floor of Flatland: Epitaxial Growth of Graphene on Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102747. [PMID: 34310038 DOI: 10.1002/smll.202102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2021] [Indexed: 06/13/2023]
Abstract
In the studies presented here, the subsequent growth of graphene on hexagonal boron nitride (h-BN) is achieved by the thermal decomposition of molecular precursors and the catalytic assistance of metal substrates. The epitaxial growth of h-BN on Pt(111) is followed by the deposition of a temporary Pt film that acts as a catalyst for the fabrication of the graphene sheet. After intercalation of the intermediate Pt film underneath the boron-nitride mesh, graphene resides on top of h-BN. Scanning tunneling microscopy and density functional calculations reveal that the moiré pattern of the van-der-Waals-coupled double layer is due to the interface of h-BN and Pt(111). While on Pt(111) the graphene honeycomb unit cells uniformly appear as depressions using a clean metal tip for imaging, on h-BN they are arranged in a honeycomb lattice where six protruding unit cells enframe a topographically dark cell. This superstructure is most clearly observed at small probe-surface distances. Spatially resolved inelastic electron tunneling spectroscopy enables the detection of a previously predicted acoustic hybrid phonon of the stacked materials. Its' spectroscopic signature is visible in surface regions where the single graphene sheet on Pt(111) transitions into the top layer of the stacking.
Collapse
Affiliation(s)
- Alexander Mehler
- Institut für Physik, Technische Universität Ilmenau, D-98693, Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693, Ilmenau, Germany
| | - Elena Voloshina
- Physics Department, Shanghai University, Shanghai, 200444, P. R. China
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Yuriy Dedkov
- Physics Department, Shanghai University, Shanghai, 200444, P. R. China
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693, Ilmenau, Germany
| |
Collapse
|
7
|
Maier S, Stöhr M. Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:950-956. [PMID: 34540518 PMCID: PMC8404214 DOI: 10.3762/bjnano.12.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Sabine Maier
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
8
|
Grewal A, Wang Y, Münks M, Kern K, Ternes M. Local stiffness and work function variations of hexagonal boron nitride on Cu(111). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:559-565. [PMID: 34221802 PMCID: PMC8218540 DOI: 10.3762/bjnano.12.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Combined scanning tunnelling and atomic force microscopy using a qPlus sensor enables the measurement of electronic and mechanic properties of two-dimensional materials at the nanoscale. In this work, we study hexagonal boron nitride (h-BN), an atomically thin 2D layer, that is van der Waals-coupled to a Cu(111) surface. The system is of interest as a decoupling layer for functional 2D heterostructures due to the preservation of the h-BN bandgap and as a template for atomic and molecular adsorbates owing to its local electronic trapping potential due to the in-plane electric field. We obtain work function (Φ) variations on the h-BN/Cu(111) superstructure of the order of 100 meV using two independent methods, namely the shift of field emission resonances and the contact potential difference measured by Kelvin probe force microscopy. Using 3D force profiles of the same area we determine the relative stiffness of the Moiré region allowing us to analyse both electronic and mechanical properties of the 2D layer simultaneously. We obtain a sheet stiffness of 9.4 ± 0.9 N·m-1, which is one order of magnitude higher than the one obtained for h-BN/Rh(111). Using constant force maps we are able to derive height profiles of h-BN/Cu(111) showing that the system has a corrugation of 0.6 ± 0.2 Å, which helps to demystify the discussion around the flatness of the h-BN/Cu(111) substrate.
Collapse
Affiliation(s)
- Abhishek Grewal
- Max Planck Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Yuqi Wang
- Max Planck Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
- Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Matthias Münks
- Max Planck Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Klaus Kern
- Max Planck Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Markus Ternes
- Max Planck Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
- Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich, Germany
- II. Institute of Physics, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
9
|
Bouatou M, Harsh R, Joucken F, Chacon C, Repain V, Bellec A, Girard Y, Rousset S, Sporken R, Gao F, Brandbyge M, Dappe YJ, Barreteau C, Smogunov A, Lagoute J. Intraconfigurational Transition due to Surface-Induced Symmetry Breaking in Noncovalently Bonded Molecules. J Phys Chem Lett 2020; 11:9329-9335. [PMID: 33089985 DOI: 10.1021/acs.jpclett.0c02407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The interaction of molecules with surfaces plays a crucial role in the electronic and chemical properties of supported molecules and needs a comprehensive description of interfacial effects. Here, we unveil the effect of the substrate on the electronic configuration of iron porphyrin molecules on Au(111) and graphene, and we provide a physical picture of the molecule-surface interaction. We show that the frontier orbitals derive from different electronic states depending on the substrate. The origin of this difference comes from molecule-substrate orbital selective coupling caused by reduced symmetry and interaction with the substrate. The weak interaction on graphene keeps a ground state configuration close to the gas phase, while the stronger interaction on gold stabilizes another electronic solution. Our findings reveal the origin of the energy redistribution of molecular states for noncovalently bonded molecules on surfaces.
Collapse
Affiliation(s)
- Mehdi Bouatou
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Rishav Harsh
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Frédéric Joucken
- Research Center in Physics of Matter and Radiation (PMR), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Cyril Chacon
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Vincent Repain
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Amandine Bellec
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Yann Girard
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Sylvie Rousset
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| | - Robert Sporken
- Research Center in Physics of Matter and Radiation (PMR), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - Fei Gao
- Center for Nanostructured Graphene, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mads Brandbyge
- Center for Nanostructured Graphene, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yannick J Dappe
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Cyrille Barreteau
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Alexander Smogunov
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Jérôme Lagoute
- Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France
| |
Collapse
|