1
|
Khandave NP, Hansen DF, Vallurupalli P. Increasing the accuracy of exchange parameters reporting on slow dynamics by performing CEST experiments with 'high' B 1 fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 363:107699. [PMID: 38851059 DOI: 10.1016/j.jmr.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024]
Abstract
Over the last decade chemical exchange saturation transfer (CEST) NMR methods have emerged as powerful tools to characterize biomolecular conformational dynamics occurring between a visible major state and 'invisible' minor states. The ability of the CEST experiment to detect these minor states, and provide precise exchange parameters, hinges on using appropriate B1 field strengths during the saturation period. Typically, a pair of B1 fields with ω1 (=2πB1) values around the exchange rate kex are chosen. Here we show that the transverse relaxation rate of the minor state resonance (R2,B) also plays a crucial role in determining the B1 fields that lead to the most informative datasets. Using [Formula: see text] ≥ kex, to guide the choice of B1, instead of kex, leads to data wherefrom substantially more accurate exchange parameters can be derived. The need for higher B1 fields, guided by K, is demonstrated by studying the conformational exchange in two mutants of the 71 residue FF domain with kex ∼ 11 s-1 and ∼ 72 s-1, respectively. In both cases analysis of CEST datasets recorded using B1 field values guided by kex lead to imprecise exchange parameters, whereas using B1 values guided by K resulted in precise site-specific exchange parameters. The conclusions presented here will be valuable while using CEST to study slow processes at sites with large intrinsic relaxation rates, including carbonyl sites in small to medium sized proteins, amide 15N sites in large proteins and when the minor state dips are broadened due to exchange among the minor states.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; The Francis Crick Institute, London, NW1 1BF, United Kingdom.
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
2
|
Gupta MN, Uversky VN. Reexamining the diverse functions of arginine in biochemistry. Biochem Biophys Res Commun 2024; 705:149731. [PMID: 38432110 DOI: 10.1016/j.bbrc.2024.149731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Arginine in a free-state and as part of peptides and proteins shows distinct tendency to form clusters. In free-form, it has been found useful in cryoprotection, as a drug excipient for both solid and liquid formulations, as an aggregation suppressor, and an eluent in protein chromatography. In many cases, the mechanisms by which arginine acts in all these applications is either debatable or at least continues to attract interest. It is quite possible that arginine clusters may be involved in many such applications. Furthermore, it is possible that such clusters are likely to behave as intrinsically disordered polypeptides. These considerations may help in understanding the roles of arginine in diverse applications and may even lead to better strategies for using arginine in different situations.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Tiwari VP, De D, Thapliyal N, Kay LE, Vallurupalli P. Beyond slow two-state protein conformational exchange using CEST: applications to three-state protein interconversion on the millisecond timescale. JOURNAL OF BIOMOLECULAR NMR 2024; 78:39-60. [PMID: 38169015 DOI: 10.1007/s10858-023-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Although NMR spectroscopy is routinely used to study the conformational dynamics of biomolecules, robust analyses of the data are challenged in cases where exchange is more complex than two-state, such as when a 'visible' major conformer exchanges with two 'invisible' minor states on the millisecond timescale. It is becoming increasingly clear that chemical exchange saturation transfer (CEST) NMR experiments that were initially developed to study systems undergoing slow interconversion are also sensitive to intermediate-fast timescale biomolecular conformational exchange. Here we investigate the utility of the amide 15N CEST experiment to characterise protein three-state exchange occurring on the millisecond timescale by studying the interconversion between the folded (F) state of the FF domain from human HYPA/FBP11 (WT FF) and two of its folding intermediates I1 and I2. Although 15N CPMG experiments are consistent with the F state interconverting with a single minor state on the millisecond timescale, 15N CEST data clearly establish an exchange process between F and a pair of minor states. A unique three-state exchange model cannot be obtained by analysis of 15N CEST data recorded at a single temperature. However, including the relative sign of the difference in the chemical shifts of the two minor states based on a simple two-state analysis of CEST data recorded at multiple temperatures, results in a robust three-state model in which the F, I1 and I2 states interconvert with each other on the millisecond timescale ( k e x , F I 1 ~ 550 s-1, k e x , F I 2 ~ 1200 s-1, k e x , I 1 I 2 ~ 5000 s-1), with I1 and I2 sparsely populated at ~ 0.15% and ~ 0.35%, respectively, at 15 °C. A computationally demanding grid-search of exchange parameter space is not required to extract the best-fit exchange parameters from the CEST data. The utility of the CEST experiment, thus, extends well beyond studies of conformers in slow exchange on the NMR chemical shift timescale, to include systems with interconversion rates on the order of thousands/second.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Debajyoti De
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Nemika Thapliyal
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
4
|
Sieme D, Engelke M, Rezaei-Ghaleh N, Becker S, Wienands J, Griesinger C. Autoinhibition in the Signal Transducer CIN85 Modulates B Cell Activation. J Am Chem Soc 2024; 146:399-409. [PMID: 38111344 PMCID: PMC10786037 DOI: 10.1021/jacs.3c09586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Signal transduction by the ligated B cell antigen receptor (BCR) depends on the preorganization of its intracellular components, such as the effector proteins SLP65 and CIN85 within phase-separated condensates. These liquid-like condensates are based on the interaction between three Src homology 3 (SH3) domains and the corresponding proline-rich recognition motifs (PRM) in CIN85 and SLP65, respectively. However, detailed information on the protein conformation and how it impacts the capability of SLP65/CIN85 condensates to orchestrate BCR signal transduction is still lacking. This study identifies a hitherto unknown intramolecular SH3:PRM interaction between the C-terminal SH3 domain (SH3C) of CIN85 and an adjacent PRM. We used high-resolution nuclear magnetic resonance (NMR) experiments to study the flexible linker region containing the PRM and determined the extent of the interaction in multidomain constructs of the protein. Moreover, we observed that the phosphorylation of a serine residue located in the immediate vicinity of the PRM regulates this intramolecular interaction. This allows for a dynamic modulation of CIN85's valency toward SLP65. B cell culture experiments further revealed that the PRM/SH3C interaction is crucial for maintaining the physiological level of SLP65/CIN85 condensate formation, activation-induced membrane recruitment of CIN85, and subsequent mobilization of Ca2+. Our findings therefore suggest that the intramolecular interaction with the adjacent disordered linker is effective in modulating CIN85's valency both in vitro and in vivo. This therefore constitutes a powerful way for the modulation of SLP65/CIN85 condensate formation and subsequent B cell signaling processes within the cell.
Collapse
Affiliation(s)
- Daniel Sieme
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Engelke
- Institute
for Cellular and Molecular Immunology, Georg-August
University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Institute
of Physical Biology, Heinrich Heine University
Düsseldorf, Universitätsstraße
1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Stefan Becker
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jürgen Wienands
- Institute
for Cellular and Molecular Immunology, Georg-August
University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Christian Griesinger
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Shukla VK, Heller GT, Hansen DF. Biomolecular NMR spectroscopy in the era of artificial intelligence. Structure 2023; 31:1360-1374. [PMID: 37848030 DOI: 10.1016/j.str.2023.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Biomolecular nuclear magnetic resonance (NMR) spectroscopy and artificial intelligence (AI) have a burgeoning synergy. Deep learning-based structural predictors have forever changed structural biology, yet these tools currently face limitations in accurately characterizing protein dynamics, allostery, and conformational heterogeneity. We begin by highlighting the unique abilities of biomolecular NMR spectroscopy to complement AI-based structural predictions toward addressing these knowledge gaps. We then highlight the direct integration of deep learning approaches into biomolecular NMR methods. AI-based tools can dramatically improve the acquisition and analysis of NMR spectra, enhancing the accuracy and reliability of NMR measurements, thus streamlining experimental processes. Additionally, deep learning enables the development of novel types of NMR experiments that were previously unattainable, expanding the scope and potential of biomolecular NMR spectroscopy. Ultimately, a combination of AI and NMR promises to further revolutionize structural biology on several levels, advance our understanding of complex biomolecular systems, and accelerate drug discovery efforts.
Collapse
Affiliation(s)
- Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Gabriella T Heller
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Khandave NP, Sekhar A, Vallurupalli P. Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R 2 and visible peak-position constraints. JOURNAL OF BIOMOLECULAR NMR 2023; 77:165-181. [PMID: 37300639 PMCID: PMC7615914 DOI: 10.1007/s10858-023-00419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
7
|
Wang X, Yu B, Iwahara J. Slow Rotational Dynamics of Cytosine NH 2 Groups in Double-Stranded DNA. Biochemistry 2022; 61:1415-1418. [PMID: 35759792 PMCID: PMC9805297 DOI: 10.1021/acs.biochem.2c00299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aromatic NH2 groups are essential as hydrogen-bond donors in secondary structures of DNA and RNA. Although rapid rotations of NH2 groups of adenine and guanine bases were previously characterized, there has been a lack of quantitative information about slow rotations of cytosine NH2 groups in Watson-Crick base pairs. In this study, using an NMR method we had recently developed, we determined the kinetic rate constants and energy barriers for cytosine NH2 rotations in a 15-base-pair DNA duplex. Our data show that the rotational dynamics of cytosine NH2 groups depend on local environments. Qualitative correlation between the ranges of 15N chemical shifts and rotational time scales for various NH2 groups of nucleic acids and proteins illuminates a relationship between the partial double-bond character of the C-N bond and the time scale for NH2 rotations.
Collapse
|
8
|
Jain S, Sekhar A. Elucidating the mechanisms underlying protein conformational switching using NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100034. [PMID: 35586549 PMCID: PMC7612731 DOI: 10.1016/j.jmro.2022.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How proteins switch between various ligand-free and ligand-bound structures has been a key biophysical question ever since the postulation of the Monod-Wyman-Changeux and Koshland-Nemethy-Filmer models over six decades ago. The ability of NMR spectroscopy to provide structural and kinetic information on biomolecular conformational exchange places it in a unique position as an analytical tool to interrogate the mechanisms of biological processes such as protein folding and biomolecular complex formation. In addition, recent methodological developments in the areas of saturation transfer and relaxation dispersion have expanded the scope of NMR for probing the mechanics of transitions in systems where one or more states constituting the exchange process are sparsely populated and 'invisible' in NMR spectra. In this review, we highlight some of the strategies available from NMR spectroscopy for examining the nature of multi-site conformational exchange, using five case studies that have employed NMR, either in isolation, or in conjunction with other biophysical tools.
Collapse
|
9
|
Wang X, Yu B, Iwahara J. Hindered Rotations of Protein Asparagine/Glutamine Side-Chain NH 2 Groups: Impact of Hydrogen Bonding with DNA. J Phys Chem Lett 2021; 12:11378-11382. [PMID: 34784468 PMCID: PMC8643942 DOI: 10.1021/acs.jpclett.1c03467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hindered rotation about an sp2 C-N bond is known to occur in arginine (Arg), asparagine (Asn), and glutamine (Gln) side chains of proteins. However, very little is known about the rotational dynamics of Asn and Gln side-chain NH2 groups. Here, using a unique NMR method, we quantitatively characterized the hindered rotations of protein Asn/Gln side-chain NH2 groups. This NMR method yields simple NH2-selective spectra that allow for an accurate determination of the kinetic rate constants for the hindered rotations. Through the NMR measurements at different temperatures, we investigated the energy barriers that restrict the C-N bond rotations of protein side-chain NH2 groups. Through a comparison of the kinetic data for the free and DNA-bound states of the Antp homeodomain, we also examined the impact of hydrogen bonding on the hindered rotations of the side-chain NH2 groups. Our data suggest that the hydrogen bonding increases the energy barriers by 1-6 kJ/mol.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
10
|
The A39G FF domain folds on a volcano-shaped free energy surface via separate pathways. Proc Natl Acad Sci U S A 2021; 118:2115113118. [PMID: 34764225 DOI: 10.1073/pnas.2115113118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect "invisible" minor states on the energy landscape of the A39G mutant FF domain that exhibited "two-state" folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s-1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 μs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.
Collapse
|
11
|
Karunanithy G, Mackenzie HW, Hansen DF. Virtual Homonuclear Decoupling in Direct Detection Nuclear Magnetic Resonance Experiments Using Deep Neural Networks. J Am Chem Soc 2021; 143:16935-16942. [PMID: 34633815 DOI: 10.1021/jacs.1c04010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear magnetic resonance (NMR) experiments are frequently complicated by the presence of homonuclear scalar couplings. For the growing body of biomolecular 13C-detected NMR methods, one-bond 13C-13C couplings significantly reduce sensitivity and resolution. The solution to this problem has typically been to perform virtual decoupling by recording multiple spectra and taking linear combinations. Here, we propose an alternative method of virtual decoupling using deep neural networks, which only requires a single spectrum and gives a significant boost in resolution while reducing the minimum effective phase cycles of the experiments by at least a factor of 2. We successfully apply this methodology to virtually decouple in-phase CON (13CO-15N) protein NMR spectra, 13C-13C correlation spectra of protein side chains, and 13Cα-detected protein 13Cα-13CO spectra where two large homonuclear couplings are present. The deep neural network approach effectively decouples spectra with a high degree of flexibility, including in cases where existing methods fail, and facilitates the use of simpler pulse sequences.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom WC1E 6BT
| | - Harold W Mackenzie
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom WC1E 6BT
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom WC1E 6BT
| |
Collapse
|
12
|
Vemulapalli SB, Becker S, Griesinger C, Rezaei-Ghaleh N. Combined High-Pressure and Multiquantum NMR and Molecular Simulation Propose a Role for N-Terminal Salt Bridges in Amyloid-Beta. J Phys Chem Lett 2021; 12:9933-9939. [PMID: 34617758 PMCID: PMC8521524 DOI: 10.1021/acs.jpclett.1c02595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Several lines of evidence point to the important role of the N-terminal region of amyloid-beta (Aβ) peptide in its toxic aggregation in Alzheimer's disease (AD). It is known that charge-altering modifications such as Ser8 phosphorylation promote Aβ fibrillar aggregation. In this Letter, we combine high-pressure NMR, multiquantum chemical exchange saturation transfer (MQ-CEST) NMR, and microseconds-long molecular dynamics simulation and provide evidence of the presence of several salt bridges between Arg5 and its nearby negatively charged residues, in particular, Asp7 and Glu3. The presence of these salt bridges is correlated with less extended structures in the N-terminal region of Aβ. Through density functional theory calculations, we demonstrate how the introduction of negatively charged phosphoserine 8 influences the network of adjacent salt bridges in Aβ and favors more extended N-terminal structures. Our data propose a structural mechanism for the Ser8-phosphorylation-promoted Aβ aggregation and define the N-terminal salt bridges as potential targets for anti-AD drug design.
Collapse
Affiliation(s)
- Sahithya
Phani Babu Vemulapalli
- Department
of NMR-based Structural Biology, Max Planck
Institute for Biophysical Chemistry, Göttingen 37077, Germany
- Institute
for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26129, Germany
| | - Stefan Becker
- Department
of NMR-based Structural Biology, Max Planck
Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Christian Griesinger
- Department
of NMR-based Structural Biology, Max Planck
Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department
of NMR-based Structural Biology, Max Planck
Institute for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Neurology, University Medical Center
Göttingen, Göttingen 37075, Germany
- Institute
for Physical Biology, Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
13
|
Jaladeep A, Varghese CN, Sekhar A. Measuring radiofrequency fields in NMR spectroscopy using offset-dependent nutation profiles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 330:107032. [PMID: 34311422 PMCID: PMC7612739 DOI: 10.1016/j.jmr.2021.107032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The application of NMR spectroscopy for studying molecular and reaction dynamics relies crucially on the measurement of the magnitude of radiofrequency (RF) fields that are used to nutate or lock the nuclear magnetization. Here, we report a method for measuring RF field amplitudes that leverages the intrinsic modulations observed in offset-dependent NMR nutation profiles of small molecules. Such nutation profiles are exquisitely sensitive to the magnitude of the RF field, and B1 values ranging from 1 to 2000 Hz, as well the inhomogeneity in B1 distributions, can be determined with high accuracy and precision using this approach. In order to measure B1 fields associated with NMR experiments carried out on protein or nucleic acids, where these modulations are obscured by the large transverse relaxation rate constants of the analyte, our approach can be used in conjunction with a suitable external small molecule standard, expanding the scope of the method for large biomolecules.
Collapse
Affiliation(s)
- Ahallya Jaladeep
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Claris Niya Varghese
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
14
|
Karunanithy G, Shukla VK, Hansen DF. Methodological advancements for characterising protein side chains by NMR spectroscopy. Curr Opin Struct Biol 2021; 70:61-69. [PMID: 33989947 DOI: 10.1016/j.sbi.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
The surface of proteins is covered by side chains of polar amino acids that are imperative for modulating protein functionality through the formation of noncovalent intermolecular interactions. However, despite their tremendous importance, the unique structures of protein side chains require tailored approaches for investigation by nuclear magnetic resonance spectroscopy and so have traditionally been understudied compared with the protein backbone. Here, we review substantial recent methodological advancements within nuclear magnetic resonance spectroscopy to address this issue. Specifically, we consider advancements that provide new insight into methyl-bearing side chains, show the potential of using non-natural amino acids and reveal the actions of charged side chains. Combined, the new methods promise unprecedented characterisations of side chains that will further elucidate protein function.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|