1
|
Zhao ZH, Han BL, Su HF, Guo QL, Wang WX, Zhuo JQ, Guo YN, Liu JL, Luo GG, Cui P, Sun D. Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework. Nat Commun 2024; 15:9401. [PMID: 39477935 PMCID: PMC11525653 DOI: 10.1038/s41467-024-53640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen-bonded assembly of multiple components into well-defined icosahedral capsules akin to virus capsids has been elusive. In parallel, constructing robust zeolitic-like cluster-based supramolecular frameworks (CSFs) without any coordination covalent bonding linkages remains challenging. Herein, we report a cluster-based pseudoicosahedral H-bonded capsule Cu60, which is buckled by the self-organization of judiciously designed constituent copper clusters and anions. The spontaneous formation of the icosahedron in the solid state takes advantage of 48 charge-assisted CH···F hydrogen bonds between cationic clusters and anions (PF6-), and is highly sensitive to the surface protective ligands on the clusters with minor structural modification inhibiting its formation. Most excitingly, an extended three-periodic robust zeolitic-like CSF, is constructed by edge-sharing the resultant icosahedrons. The perpendicular channels of the CSF feature unusual 3D orthogonal double-helical patterns. The CSF material not only keeps its single-crystal character in the desolvated phase, but also exhibits excellent chemical and thermal stabilities as well as long-lived phosphorescence emission.
Collapse
Affiliation(s)
- Zhan-Hua Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Bao-Liang Han
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Hai-Feng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Qi-Lin Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Wen-Xin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Jing-Qiu Zhuo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Yong-Nan Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Jia-Long Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China.
| | - Ping Cui
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China.
| |
Collapse
|
2
|
Liu Z, Fang JJ, Wang ZY, Xie YP, Lu X. Structural diversity of copper(I) alkynyl cluster-based coordination polymers utilizing bifunctional pyridine carboxylic acid ligands. NANOSCALE 2024; 16:17817-17824. [PMID: 39240170 DOI: 10.1039/d4nr02543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The utilization of bifunctional ligands, specifically pyridine carboxylic acids, endowed with dual coordination sites, has been instrumental in the assembly of polymer materials. The ambidentate characteristics of these ligands play a crucial role in shaping the structure and framework of cluster-based polymers. In this study, we have synthesized a diverse array of multidimensional copper(I) alkynyl cluster-based polymers (CACPs) by employing four distinct pyridine carboxylic acids - namely, isonicotinic acid (INA), 6-isoquinolinecarboxylic acid (IQL), 4-pyridin-4-yl-benzoic acid (4-PyBA), and 3-pyridin-4-yl-benzoic acid (3-PyBA) - as linking ligands. These pyridine carboxylic acids not only serve as protective ligands but also act as pivotal linkers in constructing the cluster-based framework materials, exerting significant influence on the overall framework structures. Furthermore, the incorporation of auxiliary ligands has been shown to markedly impact the structural integrity and framework architecture of the CACPs. This study elucidates the indispensable role of pyridine carboxylic acids in the construction and stabilization of cluster-based framework materials, thereby advancing the frontier of research in metal cluster-based framework material synthesis.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhi-Yi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
3
|
Wang Q, Murphy RP, Gau MR, Carroll PJ, Tomson NC. Controlling the Size of Molecular Copper Clusters Supported by a Multinucleating Macrocycle. Inorg Chem 2024; 63:18332-18344. [PMID: 39292545 DOI: 10.1021/acs.inorgchem.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The use of a nonrigid, pyridyldialdimine-derived macrocyclic ligand (3PDAI2) enabled the synthesis of well-defined mono-, di-, tri-, and tetra-nuclear Cu(I) complexes in good yields through rational synthetic means. Starting from mono- and diargentous 3PDAI2 complexes, transmetalation to Cu(I) proceeded smoothly with formation of AgX (X = Cl, I) salts to generate mono-, di-, and trinuclear copper complexes. Monodentate supporting ligands (MeCN, xylNC, PMe3, PPh3) were found to either transmetallate with or bind various di- and trinuclear clusters. The solution-phase dynamic behaviors of these species were studied through NMR spectroscopic investigations, and an in-depth study of the trinuclear systems revealed a rate dependence on the identity of the supporting ligand, indicating that ligand dissociation reactions were involved in the dynamic exchange processes. Synthetic investigations further found methods for the purposeful interconversion between the di- and trinuclear systems as well as the synthesis of a pseudotetrahedral tetracopper complex with two μ-Ph supporting ligands.
Collapse
Affiliation(s)
- Qiuran Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ryan P Murphy
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Neil C Tomson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Biswas S, Pal A, Jena MK, Hossain S, Sakai J, Das S, Sahoo B, Pathak B, Negishi Y. Luminescent Hydride-Free [Cu 7(SC 5H 9) 7(PPh 3) 3] Nanocluster: Facilitating Highly Selective C-C Bond Formation. J Am Chem Soc 2024. [PMID: 38979882 DOI: 10.1021/jacs.4c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Amidst burgeoning interest, atomically precise copper nanoclusters (Cu NCs) have emerged as a remarkable class of nanomaterials distinguished by their unparalleled reactivity. Nonetheless, the synthesis of hydride-free Cu NCs and their role as stable catalysts remain infrequently explored. Here, we introduce a facile synthetic approach to fabricate a hydride-free [Cu7(SC5H9)7(PPh3)3] (Cu7) NC and delineate its photophysical properties intertwined with their structural configuration. Moreover, the utilization of its photophysical properties in a photoinduced C-C coupling reaction demonstrates remarkable specificity toward cross-coupling products with high yields. The combined experimental and theoretical investigation reveals a nonradical mechanistic pathway distinct from its counterparts, offering promising prospects for designing hydride-free Cu NC catalysts in the future and unveiling the selectivity of the hydride-free [Cu7(SC5H9)7(PPh3)3] NC in photoinduced Sonogashira C-C coupling through a polar reaction pathway.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Amit Pal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Yuichi Negishi
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
5
|
Biswas S, Negishi Y. Exploring the impact of various reducing agents on Cu nanocluster synthesis. Dalton Trans 2024; 53:9657-9663. [PMID: 38624154 DOI: 10.1039/d4dt00296b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The synthesis of copper (Cu) nanoclusters (NCs) has experienced significant advancements in recent years. Despite the exploration of metal NCs dating back almost two decades, challenges specific to Cu NC synthesis arise from the variable oxidation states and heightened reactivity of intermediate Cu complexes, distinguishing it from its analogous counterparts. In this study, we present a comprehensive overview of this newly evolving research domain, focusing on the synthetic aspects. We delve into various factors influencing the synthesis of Cu NCs, with specific emphasis on the role of reducing agents. The impact of the reducing agent is particularly pivotal in this synthetic process, ultimately influencing the formation of model M(0)-containing NCs, which are less readily accessible in the context of Cu NCs. We anticipate that this frontier article will pave the way for accelerated research in the field of Cu NCs. By aiding in the selection of specific reaction conditions and reducing agents, we believe that this work will contribute to a faster-paced exploration of Cu NCs, further advancing our understanding and applications in this exciting area of nanomaterial research.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
6
|
Liu LJ, Zhang MM, Deng Z, Yan LL, Lin Y, Phillips DL, Yam VWW, He J. NIR-II emissive anionic copper nanoclusters with intrinsic photoredox activity in single-electron transfer. Nat Commun 2024; 15:4688. [PMID: 38824144 PMCID: PMC11144245 DOI: 10.1038/s41467-024-49081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Ultrasmall copper nanoclusters have recently emerged as promising photocatalysts for organic synthesis, owing to their exceptional light absorption ability and large surface areas for efficient interactions with substrates. Despite significant advances in cluster-based visible-light photocatalysis, the types of organic transformations that copper nanoclusters can catalyze remain limited to date. Herein, we report a structurally well-defined anionic Cu40 nanocluster that emits in the second near-infrared region (NIR-II, 1000-1700 nm) after photoexcitation and can conduct single-electron transfer with fluoroalkyl iodides without the need for external ligand activation. This photoredox-active copper nanocluster efficiently catalyzes the three-component radical couplings of alkenes, fluoroalkyl iodides, and trimethylsilyl cyanide under blue-LED irradiation at room temperature. A variety of fluorine-containing electrophiles and a cyanide nucleophile can be added onto an array of alkenes, including styrenes and aliphatic olefins. Our current work demonstrates the viability of using readily accessible metal nanoclusters to establish photocatalytic systems with a high degree of practicality and reaction complexity.
Collapse
Affiliation(s)
- Li-Juan Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, China
| | - Mao-Mao Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Liang-Liang Yan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Institute of Molecular Functional Materials, The University of Hong Kong, Hong Kong, China
| | - Yang Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Institute of Molecular Functional Materials, The University of Hong Kong, Hong Kong, China
| | - Jian He
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China.
| |
Collapse
|
7
|
Koizumi Y, Yonesato K, Kikkawa S, Yamazoe S, Yamaguchi K, Suzuki K. Small Copper Nanoclusters Synthesized through Solid-State Reduction inside a Ring-Shaped Polyoxometalate Nanoreactor. J Am Chem Soc 2024; 146:14610-14619. [PMID: 38682247 DOI: 10.1021/jacs.4c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Cu nanoclusters exhibit distinctive physicochemical properties and hold significant potential for multifaceted applications. Although Cu nanoclusters are synthesized by reacting Cu ions and reducing agents by covering their surfaces using organic protecting ligands or supporting them inside porous materials, the synthesis of surface-exposed Cu nanoclusters with a controlled number of Cu atoms remains challenging. This study presents a solid-state reduction method for the synthesis of Cu nanoclusters employing a ring-shaped polyoxometalate (POM) as a structurally defined and rigid molecular nanoreactor. Through the reduction of Cu2+ incorporated within the cavity of a ring-shaped POM using H2 at 140 °C, spectroscopic studies and single-crystal X-ray diffraction analysis revealed the formation of surface-exposed Cu nanoclusters with a defined number of Cu atoms within the cavities of POMs. Furthermore, the Cu nanoclusters underwent a reversible redox transformation within the cavity upon alternating the gas atmosphere (i.e., H2 or O2). These Cu nanoclusters produced active hydrogen species that can efficiently hydrogenate various functional groups such as alkenes, alkynes, carbonyls, and nitro groups using H2 as a reductant. We expect that this synthesis approach will facilitate the development of a wide variety of metal nanoclusters with high reactivity and unexplored properties.
Collapse
Affiliation(s)
- Yoshihiro Koizumi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Fang JJ, Liu Z, Wang ZY, Xie YP, Lu X. Chiral Canoe-Like Pd 0 or Pt 0 Alloyed Copper Alkynyl Nanoclusters Display Near-Infrared Luminescence. Angew Chem Int Ed Engl 2024; 63:e202401206. [PMID: 38469979 DOI: 10.1002/anie.202401206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Alloying nanoclusters (NCs) has emerged as a widely explored and versatile strategy for tailoring tunable properties, facilitating in-depth atomic-level investigations of structure-property correlations. In this study, we have successfully synthesized six atomically precise copper NCs alloyed with Group 10 metals (Pd or Pt). Notably, the Pd0 or Pt0 atom situated at the center of the distorted hexagonal antiprism Pd0/Pt0@Cu12 cage, coordinated with twelve Cu+ and two tBuC≡C- ligands. Moreover, ligand exchange strategies demonstrated the potential for Cl- and Br- to replace one or two alkynyl ligands positioned at the top or side of the NCs. The chirality exhibited by these racemic NCs is primarily attributed to the involvement of halogens and a chiral (Pd/Pt)@Cu18 skeleton. Furthermore, all the NCs exhibit near-infrared (NIR) luminescence, characterized by emission peaks at 705-755 nm, lifetimes ranging from 6.630 to 9.662 μs, and absolute photoluminescence quantum yields (PLQYs) of 1.75 %-2.52 % in their crystalline state. The experimental optical properties of these NCs are found to be in excellent agreement with the results of theoretical calculations. These alloy NCs not only offer valuable insights into the synthesis of Pd0/Pt0-Cu alloy NCs, but also bridge the gap in understanding the structure-luminescence relationships of Pd0/Pt0-Cu molecules.
Collapse
Affiliation(s)
- Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi-Yi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Biswas S, Negishi Y. A Comprehensive Analysis of Luminescent Crystallized Cu Nanoclusters. J Phys Chem Lett 2024; 15:947-958. [PMID: 38252029 PMCID: PMC10839905 DOI: 10.1021/acs.jpclett.3c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) emission is an intriguing characteristic displayed by atomically precise d10 metal nanoclusters (NCs), renowned for their meticulous atomic arrangements, which have captivated the scientific community. Cu(I) NCs are a focal point in extensive research due to their abundance, cost-effectiveness, and unique luminescent attributes. Despite similar core sizes, their luminescent characteristics vary, influenced by multiple factors. Progress hinges on synthesizing new NCs and modifying existing ones, with postsynthetic alterations impacting emission properties. The rapid advancements in this field pose challenges in discerning essential points for excelling amidst competition with other d10 NCs. This Perspective explores the intricate origins of PL emission in Cu(I) NCs, providing a comprehensive review of their correlated structural architectures. Understanding the mechanistic origin of PL emission in each cluster is crucial for correlating diverse characteristics, contributing to a deeper comprehension from both fundamental and applied scientific perspectives.
Collapse
Affiliation(s)
- Sourav Biswas
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research
Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
10
|
Xu T, Wang E, Liu S, Wei Z, Yin P, Sun J, Xu WW, Song Y. Large-scale synthesis, mechanism, and application of a luminescent copper hydride nanocluster. Dalton Trans 2023. [PMID: 38010928 DOI: 10.1039/d3dt02595k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Elucidating the structure-property relationships of ultra-small metal nanocluster with basic nuclear is of great significance for understanding the evolution mechanism in both the structures and properties of polynuclear metal nanoclusters. In this study, an ultra-small copper hydride (CuH for short) nanocluster was simply synthesized with high yield, and the large-scale preparation was also achieved. Single crystal X-ray diffractometer (SC-XRD) analysis shows that this copper NC contains a tetrahedral Cu4 core co-capped by four PPh2Py ligands and two Cl in which the existence of the central H atom in tetrahedron was further identified experimentally and theoretically. This CuH nanocluster exhibits bright yellow emission, which is proved to be the mixture of phosphorescence and fluorescence by the sensitivity of both emission intensity and lifetime to O2. Furthermore, the temperature-dependent emission spectra and density functional theory (DFT) calculations suggest that the luminescence of CuH mainly originates from the metal-to-ligand charge transfer and cluster-centered triplet excited states. This work offers new insights into understanding the structure-property relationship of basic nuclear CuH nanocluster.
Collapse
Affiliation(s)
- Tingting Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Shuai Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Zhezhen Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Peiqun Yin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jianan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Yongbo Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
11
|
Zhang S, Gao J, Tang F, Wang J, Yao C, Li L. Seedless wet synthesis of copper-twinned nanocrystals. NANOSCALE 2023; 15:18447-18456. [PMID: 37937978 DOI: 10.1039/d3nr04879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The wet synthesis of copper (Cu)-twinned nanostructures often requires the addition of noble metal seeds, as twinned Cu seeds are prone to oxidative etching, which inevitably introduces other metal species. In this study, a universal and seedless wet method is proposed for the synthesis of various Cu-twinned nanostructures, such as large Cu decahedrons (with sizes up to 300 nm), singly twinned Cu right bipyramids, and Cu nanorods. The amount of chloride ions (Cl-) and oleylamine and an optimal heating rate at the initial stage were proven to be crucial in this synthesis. Theoretical results revealed that the amount of Cl- could adjust the Gibbs free energy of Cu seeds by promoting the dissociation of oleylamine, which, in turn, determined the structure of thermodynamically favorable seeds based on the thermodynamic model. To the best of our knowledge, this is the first report on large Cu decahedrons and singly twinned Cu right bipyramids. Moreover, they both showed strong localized surface plasmon resonance in the near-infrared region. The photothermal conversion efficiency of large Cu decahedrons increased up to 52.9% upon 808 nm laser irradiation, which is the highest value ever reported for Cu nanocrystals.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Junheng Gao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Fu Tang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Jie Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
12
|
Peng SK, Yang H, Luo D, Ning GH, Li D. A Highly NIR Emissive Cu 16 Pd 1 Nanocluster. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306863. [PMID: 37963848 DOI: 10.1002/smll.202306863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/24/2023] [Indexed: 11/16/2023]
Abstract
The construction of stable copper nanoclusters (Cu-NCs) with near-infrared (NIR) emission that can be used for catalysis is highly desired, yet remains a challenge. Herein, an atomically precise bimetallic Cu/Pd NC with a molecular formula of Cu16 Pd1 L10 (PPh3 )2 (Pz)6 (Pz = 3,5-(CF3 )2 Pyrazolate, L = 4-CH3 OPhC≡C- ), abbreviated as Cu16 Pd1 , is synthesized. Single-crystal X-ray crystallographic analysis of Cu16 Pd1 reveals a Cu10 Pd1 kernel with pseudo-gyroelongated square bipyramid confirmation surrounded by other 6 Cu(I) ions and protected ligands. Interestingly, it exhibits strong NIR emission with the highest photoluminescence quantum yield (PLQY) among all the Cu NCs/Cu alloys (λem > 800 nm) in the solid-state, and also displays NIR emission in solution. Experimental results and theoretical calculations suggest that the impressive NIR emission is attributed to abundant supramolecular interactions in the solid-state, including intramolecular metal-metal and intermolecular interactions. Of note, the bimetallic Cu16 Pd1 can catalyze the reduction of 4-nitrophenol. This work provides a novel method for synthesizing Cu/Pd NCs and reminds that the less studied Cu/Pd NC can serve as outstanding luminescent material, which is seldom noticed in atomically precise nanoclusters.
Collapse
Affiliation(s)
- Su-Kao Peng
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Hu Yang
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
13
|
Biswas S, Das S, Negishi Y. Advances in Cu nanocluster catalyst design: recent progress and promising applications. NANOSCALE HORIZONS 2023; 8:1509-1522. [PMID: 37772632 DOI: 10.1039/d3nh00336a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The quest for cleaner pathways to the production of fuels and chemicals from non-fossil feedstock, efficient transformation of raw materials to value-added chemicals under mild conditions, and control over the activity and selectivity of chemical processes are driving the state-of-the-art approaches to the construction and precise chemical modification of sustainable nanocatalysts. As a burgeoning category of atomically precise noble metal nanoclusters, copper nanoclusters (Cu NCs) benefitting from their exclusive structural architecture, ingenious designability of active sites and high surface-to-volume ratio qualify as potential rationally-designed catalysts. In this Minireview, we present a detailed coverage of the optimal design strategies and controlled synthesis of Cu NC catalysts with a focus on tuning of active sites at the atomic level, the implications of cluster size, shape and structure, the ligands and heteroatom doping on catalytic activity, and reaction scope ranging from chemical catalysis to emerging photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
14
|
Jia T, Guan ZJ, Zhang C, Zhu XZ, Chen YX, Zhang Q, Yang Y, Sun D. Eight-Electron Superatomic Cu 31 Nanocluster with Chiral Kernel and NIR-II Emission. J Am Chem Soc 2023; 145:10355-10363. [PMID: 37104621 DOI: 10.1021/jacs.3c02215] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Owing to the inherent instability caused by the low Cu(I)/Cu(0) half-cell reduction potential, Cu(0)-containing copper nanoclusters are quite uncommon in comparison to their Ag and Au congeners. Here, a novel eight-electron superatomic copper nanocluster [Cu31(4-MeO-PhC≡C)21(dppe)3](ClO4)2 (Cu31, dppe = 1,2-bis(diphenylphosphino)ethane) is presented with total structural characterization. The structural determination reveals that Cu31 features an inherent chiral metal core arising from the helical arrangement of two sets of three Cu2 units encircling the icosahedral Cu13 core, which is further shielded by 4-MeO-PhC≡C- and dppe ligands. Cu31 is the first copper nanocluster carrying eight free electrons, which is further corroborated by electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and density functional theory calculations. Interestingly, Cu31 demonstrates the first near-infrared (750-950 nm, NIR-I) window absorption and the second near-infrared (1000-1700 nm, NIR-II) window emission, which is exceptional in the copper nanocluster family and endows it with great potential in biological applications. Of note, the 4-methoxy groups providing close contacts with neighboring clusters are crucial for the cluster formation and crystallization, while 2-methoxyphenylacetylene leads only to copper hydride clusters, Cu6H or Cu32H14. This research not only showcases a new member of copper superatoms but also exemplifies that copper nanoclusters, which are nonluminous in the visible range may emit luminescence in the deep NIR region.
Collapse
Affiliation(s)
- Tao Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Chengkai Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Xiao-Zhao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yun-Xin Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
15
|
Miao H, Zhou Y, Wang P, Huang Z, Zhaxi W, Liu L, Duan F, Wang J, Ma X, Jiang S, Huang W, Zhang Q, Wu D. High-temperature negative thermal quenching phosphors from molecular-based materials. Chem Commun (Camb) 2023; 59:1229-1232. [PMID: 36629868 DOI: 10.1039/d2cc05921e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High-temperature negative thermal quenching (NTQ) phosphors are crucial to high-performance light-emitting devices. Herein, we report the high-temperature NTQ effect in deep-red to near-infrared (NIR) emitting copper iodide cluster-based coordination polymers as unconventional phosphors, whose NTQ operating temperature can reach as high as 500 K, the highest temperature reached by NTQ molecular-based materials.
Collapse
Affiliation(s)
- Huixian Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Yujie Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Pingping Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Zetao Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Wenjiang Zhaxi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Fengnan Duan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Jinmin Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. .,Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.
| |
Collapse
|
16
|
Lin X, Tang J, Zhu C, Wang L, Yang Y, Wu R, Fan H, Liu C, Huang J. Solvent-mediated precipitating synthesis and optical properties of polyhydrido Cu 13 nanoclusters with four vertex-sharing tetrahedrons. Chem Sci 2023; 14:994-1002. [PMID: 36755712 PMCID: PMC9890966 DOI: 10.1039/d2sc06099j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Structurally defined metal nanoclusters facilitate mechanism studies and promote functional applications. However, precisely constructing copper nanoclusters remains a long-standing challenge in nanoscience. Developing new efficient synthetic strategies for Cu nanoclusters is highly desirable. Here, we propose a solvent-mediated precipitating synthesis (SMPS) to prepare Cu13H10(SR)3(PPh3)7 nanoclusters (H-SR = 2-chloro-4-fluorobenzenethiol). The obtained Cu13 nanoclusters are high purity and high yield (39.5%, based on Cu atom), proving the superiority of the SMPS method. The Cu13 nanoclusters were comprehensively studied via a series of characterizations. Single crystal X-ray crystallography shows that the Cu13 nanoclusters contain a threefold symmetry axis and the Cu13 kernel is protected by a monolayer of ligands, including PPh3 and thiolates. Unprecedentedly, the aesthetic Cu13 kernel is composed of four vertex-sharing tetrahedrons, rather than the common icosahedral or cuboctahedral M13. The intramolecular π⋯π interactions between thiolates and PPh3 on the surface contribute to the stable configuration. Furthermore, electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) revealed the existence of ten hydrides, including four types of hydrides. Density functional theory (DFT) calculations without simplifying the ligands simulated the location of the 10 hydrides in the crystal structure. Additionally, the steady-state ultraviolet-visible absorption and fluorescence spectra of the Cu13 nanoclusters exhibit unique optical absorbance and photoluminescence. The ultrafast relaxation dynamics were also studied via transient absorption spectroscopy, and the three decay components are attributed to the relaxation pathways of internal conversion, structural relaxation and radiative relaxation. This work provides not only a novel SMPS strategy to efficiently synthesize Cu13 nanoclusters, but also a better insight into the structural characteristics and optical properties of the Cu nanoclusters.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenyu Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
17
|
Zhu XZ, Jia T, Guan ZJ, Zhang Q, Yang Y. Elongation of a Trigonal-Prismatic Copper Cluster by Diphosphine Ligands with Longer Spacers. Inorg Chem 2022; 61:15144-15151. [DOI: 10.1021/acs.inorgchem.2c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao-Zhao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Jiangsu 221008, China
| | - Tao Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Jiangsu 221008, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Hunan 410012, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Jiangsu 221008, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Jiangsu 221008, China
| |
Collapse
|
18
|
Yuan J, Yun Y, Tao Z, Zhu YN, Li L, Sheng H, Zhu M. Atomically Precise Cu
n
(n=3, 6 and 11) Nanocatalysts for Alkyne‐Haloalkane‐Amine (AHA) Coupling Reaction. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiajia Yuan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 China
| | - Yapei Yun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 China
| | - Zhinan Tao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 China
| | - Yanan N. Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 China
| | - Lin Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 China
| |
Collapse
|
19
|
Li H, Song F, Zhu D, Song Y, Zhou C, Ke F, Lu L, Kang X, Zhu M. Optical Activity from Anisotropic-Nanocluster-Assembled Supercrystals in Achiral Crystallographic Point Groups. J Am Chem Soc 2022; 144:4845-4852. [PMID: 35167256 DOI: 10.1021/jacs.1c12352] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accomplishing optical activity in achiral materials has long been a challenge. Achiral nanomaterials that crystallize in achiral point groups are generally optically inactive. Herein we report the surprising observation of optical activity in several achiral point groups for supercrystals assembled from anisotropic metal nanoclusters with atomic precision. By analyzing multiple achiral nanoclusters with different molecular structures and symmetry space groups, we have identified that the molecular anisotropy of nanocluster entities and their asymmetric arrangement in point groups of supercrystals are the two key factors for the realization of optical activity in such supercrystals. We have further exploited the polarization effect of the nanocluster supercrystals as a polarization switch that can alter the polarized state of the linearly polarized light. Our findings have broadened the fundamental principles for producing nanomaterial-based optical activity and devices with polarization effects.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Fei Song
- Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Desheng Zhu
- Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Feng Ke
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Liang Lu
- Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
20
|
Peng SK, Yang H, Luo D, Xie M, Tang WJ, Ning GH, Li D. Enhancing photoluminescence efficiency of atomically precise copper(I) nanoclusters through solvent-induced structural transformation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01427k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically precise copper(I) nanoclusters (CuNCs) with high photoluminescence (PL) efficiency and relatively short lifetime could be promising non-precious metal-based phosphorescent emitters for organic light-emitting diodes (OLEDs), but the synthesis of...
Collapse
|
21
|
Chatterjee J, Chatterjee A, Hazra P. Intrinsic-to-extrinsic emission tuning in luminescent Cu nanoclusters by in situ ligand engineering. Phys Chem Chem Phys 2021; 23:25850-25865. [PMID: 34763350 DOI: 10.1039/d1cp03596g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancement of the emission quantum yield and expansion of the emission tunability spectrum are the key aspects of an emitter, which direct the evolution of future generation light harvesting materials. In this regard, small molecular ligand-protected Cu nanoclusters (SLCuNCs) have emerged as prospective candidates. Herein, we report the broadband emission tunability in a SLCuNC system, mediated by in situ ligand replacement. 1,6-Hexanedithiol-protected blue emissive discrete Cu nanoclusters (CuNCs) and red emissive CuNC assemblies have been synthesized in one pot. The red emissive CuNC assemblies were characterized and found to be covalently-linked nanocluster superstructures. The blue emissive CuNC was further converted to a green-yellow emissive CuNC over time by a ligand replacement process, which was mediated by the oxidized form of the reducing agent used for synthesizing the blue emissive nanocluster. Steady-state emission results and fluorescence dynamics studies were used to elucidate that the ligand replacement process not only modulates the emission color but also alters the nature of emission from metal-centered intrinsic to ligand-centered extrinsic emission. Moreover, time-dependent blue to green-yellow emission tunability was demonstrated under optimized reaction conditions.
Collapse
Affiliation(s)
- Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune - 411008, Maharashtra, India.
| | - Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune - 411008, Maharashtra, India.
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune - 411008, Maharashtra, India. .,Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune - 411008, Maharashtra, India
| |
Collapse
|
22
|
Eu3+-to-Cr3+ energy transfer for the improved Cr3+- characteristic near-infrared (NIR) phosphorescence in the Cr(III)-Eu(III)-Salen complex. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Fang JJ, Shen YL, Liu Z, Liu C, Xie YP, Lu X. Copper(I) Alkynyl Clusters with Crystallization-Induced Emission Enhancement. Inorg Chem 2021; 60:13493-13499. [PMID: 34410688 DOI: 10.1021/acs.inorgchem.1c01829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four copper(I) alkynyl complexes incorporating phosphate ligands, namely, [Cu16(tBuC≡C)12(PhOPO3)2]n (1; PhOPO3 = phenyl phosphate), [Cu16(tBuC≡C)12(1-NaphOPO3)2]n (2; 1-NaphOPO3 = 1-naphthyl phosphate), [VO4@Cu25(tBuC≡C)19(1-NaphOPO3)](PF6)0.5(F)0.5 (3), and [PO4@Cu25(tBuC≡C)19(1-NaphOPO3)](PF6)0.5(F)0.5 (4), were solvothermally synthesized and well-characterized by IR spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. Single-crystal X-ray analysis revealed that the Cu16 cluster-based coordination chain polymers 1 and 2 are formed by assembly during crystallization, while 3 and 4 contain high-nuclearity copper(I) composite clusters enclosing orthovanadate and phosphate template ions, respectively, that are supported by ROPO32- ligands. Complexes 1-4 exhibit crystallization-induced emission enhancement. Their crystalline state shows strong luminescence, in striking contrast to the weak emission of the amorphous state and solution phase. A detailed investigation of the crystal structure suggests that well-arranged C-H···π and π···π interactions between the ligands are the major factors for this enhanced emission. Clusters 3 and 4 also exhibit photocurrent responses upon visible-light illumination.
Collapse
Affiliation(s)
- Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Lin Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Ke F, Zhou C, Zheng M, Li H, Bao J, Zhu C, Song Y, Xu WW, Zhu M. The alloying-induced electrical conductivity of metal-chalcogenolate nanowires. Chem Commun (Camb) 2021; 57:8774-8777. [PMID: 34378573 DOI: 10.1039/d1cc01849c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alloying is one of the most effective strategies to change the properties of inorganic-organic hybrid materials, but there are few reports of the alloying of one-dimensional nanowires with precise atomic structure due to the difficulties in obtaining the single crystals of nanowires themselves. Herein, we describe the synthesis and characterization of an alloyed one-dimensional Ag-Cu nanowire [Ag2.5Cu1.5(S-Adm)4]n. Compared with the unalloyed [Ag4(S-Adm)4]n, our novel alloyed nanowire exhibits good conductivity, and its resistivity (as a powder) was determined to be 107 Ω m by impedance analysis-consistent with that of a semiconductor. Accordingly, based on these properties combined with its excellent thermal stability and high-yielding, gram-scale synthesis, [Ag2.5Cu1.5(S-Adm)4]n is proposed for electronic-device applications.
Collapse
Affiliation(s)
- Feng Ke
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nematulloev S, Huang RW, Yin J, Shkurenko A, Dong C, Ghosh A, Alamer B, Naphade R, Hedhili MN, Maity P, Eddaoudi M, Mohammed OF, Bakr OM. [Cu 15 (PPh 3 ) 6 (PET) 13 ] 2+ : a Copper Nanocluster with Crystallization Enhanced Photoluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006839. [PMID: 33739606 DOI: 10.1002/smll.202006839] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/01/2021] [Indexed: 05/24/2023]
Abstract
Due to their atomically precise structure, photoluminescent copper nanoclusters (Cu NCs) have emerged as promising materials in both fundamental studies and technological applications, such as bio-imaging, cell labeling, phototherapy, and photo-activated catalysis. In this work, a facile strategy is reported for the synthesis of a novel Cu NCs coprotected by thiolate and phosphine ligands, formulated as [Cu15 (PPh3 )6 (PET)13 ]2+ , which exhibits bright emission in the near-infrared (NIR) region (≈720 nm) and crystallization-induced emission enhancement (CIEE) phenomenon. Single crystal X-ray crystallography shows that the NC possesses an extraordinary distorted trigonal antiprismatic Cu6 core and a, unique among metal clusters, "tri-blade fan"-like structure. An in-depth structural investigation of the ligand shell combined with density functional theory calculations reveal that the extended CH···π and π-π intermolecular ligand interactions significantly restrict the intramolecular rotations and vibrations and, thus, are a major reason for the CIEE phenomena. This study provides a strategy for the controllable synthesis of structurally defined Cu NCs with NIR luminescence, which enables essential insights into the origins of their optical properties.
Collapse
Affiliation(s)
- Saidkhodzha Nematulloev
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Yin
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aleksander Shkurenko
- Functional Materials Design Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Badriah Alamer
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rounak Naphade
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Partha Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
27
|
Fang Y, Bao K, Zhang P, Sheng H, Yun Y, Hu SX, Astruc D, Zhu M. Insight into the Mechanism of the CuAAC Reaction by Capturing the Crucial Au4Cu4–π-Alkyne Intermediate. J Am Chem Soc 2021; 143:1768-1772. [DOI: 10.1021/jacs.0c12498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yaping Fang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Kang Bao
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Peng Zhang
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Yapei Yun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| | - Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS
No. 5255, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
28
|
Shen YL, Zhao P, Jin JL, Han J, Liu C, Liu Z, Ehara M, Xie YP, Lu X. A comparative study of [Ag 11( iPrS) 9(dppb) 3] 2+ and [Ag 15S( sBuS) 12(dppb) 3] +: templating effect on structure and photoluminescence. Dalton Trans 2021; 50:10561-10566. [PMID: 34263892 DOI: 10.1039/d1dt01111a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atomically precise silver clusters with tunable photoluminescence (PL) properties have attracted extensive attention due to their great value for basic science and future applications. Here, we report that the addition of a sulfido template into a triangular thiolated silver cluster [Ag11(iPrS)9(dppb)3]·2CF3SO3·CH3OH (Ag11, dppb = 1,4-bis(diphenylphosphino)butane), which is emissive at 660 nm under ambient conditions, produced another silver cluster [S@Ag15(sBuS)12(dppb)3]·CF3SO3·H2O (Ag15) that displays 716 nm emission with a 56 nm redshift aided by the ligand sec-butyl mercaptan. The sulfido template, which affects the geometrical and electronic structures, results in a redshift of Ag11 room-temperature PL as a result of opening up the template-to-metal charge transfer (TMCT) and disturbing the electronic transition between the metal core and ligands at the periphery.
Collapse
Affiliation(s)
- Yang-Lin Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Jun-Ling Jin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Jun Han
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Chen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
29
|
Guo M, Huang B, Yi Q, Luo Z. Gas-phase synthesis and deposition of metal-bipyridine complex [M-bpy 1-2] + (M = Ag, Cu). Phys Chem Chem Phys 2021; 23:16334-16340. [PMID: 34313273 DOI: 10.1039/d1cp02399c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controllable synthesis of organometallic clusters in the gas phase is a topic of reasonable interest with precisely tunable properties depending on sizes, compositions, and intra-cluster charge-transfer interactions. Here, we have prepared small Agn+ and Cun+ clusters by using a customized magnetron sputtering (MagS) source and observed the gas-phase reactions with 2,2'-bipyridine. It is found that the small silver and copper clusters readily react with bipyridine and form products of [M-bpy1-2]+ (M = Ag, Cu). Quantum chemistry calculations reveal that the bipyridine in both [Ag-bpy1-2]+ and [Cu-bpy1-2]+ takes on cis-conformation with altered N-C-C-N dihedral angles, which is in contrast to the trans-conformation of a free 2,2'-bipyridine molecule itself. In order to unveil the principle of conformational transition, we have fully studied the interactions between the nitrogen atoms of bipyridine and the cationic Ag+ and Cu+, calculated the donor-acceptor orbital overlaps, and analyzed the correlation of their frontier molecular orbital energy levels. Furthermore, by using a soft-landing strategy, we have managed to deposit the [Cu-bpy2]+ complex onto the glass substrates coated with Ag nanoparticles, and recorded the surface-enhanced Raman scattering spectra.
Collapse
Affiliation(s)
- Mengdi Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | |
Collapse
|
30
|
Li Y, Cowan MJ, Zhou M, Luo TY, Song Y, Wang H, Rosi NL, Mpourmpakis G, Jin R. Atom-by-Atom Evolution of the Same Ligand-Protected Au 21, Au 22, Au 22Cd 1, and Au 24 Nanocluster Series. J Am Chem Soc 2020; 142:20426-20433. [PMID: 33170677 DOI: 10.1021/jacs.0c09110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atom-by-atom manipulation on metal nanoclusters (NCs) has long been desired, as the resulting series of NCs can provide insightful understanding of how a single atom affects the structure and properties as well as the evolution with size. Here, we report crystallizations of Au22(SAdm)16 and Au22Cd1(SAdm)16 (SAdm = adamantanethiolate) which link up with Au21(SAdm)15 and Au24(SAdm)16 NCs and form an atom-by-atom evolving series protected by the same ligand. Structurally, Au22(SAdm)16 has an Au3(SAdm)4 surface motif which is longer than the Au2(SAdm)3 on Au21(SAdm)15, whereas Au22Cd1(SAdm)16 lacks one staple Au atom compared to Au24(SAdm)16 and thus the surface structure is reconstructed. A single Cd atom triggers the structural transition from Au22 with a 10-atom bioctahedral kernel to Au22Cd1 with a 13-atom cuboctahedral kernel, and correspondingly, the optical properties are dramatically changed. The photoexcited carrier lifetime demonstrates that the optical properties and excited state relaxation are highly sensitive at the single atom level. By contrast, little change in both ionization potential and electron affinity is found in this series of NCs by theoretical calculations, indicating the electronic properties are independent of adding a single atom in this series. The work provides a paradigm that the NCs with continuous metal atom numbers are accessible and crystallizable when meticulously designed, and the optical properties are more affected at the single atom level than the electronic properties.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael J Cowan
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Meng Zhou
- Department of Physics, University of Miami, Coral Gables, Florida 33146, United States
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yongbo Song
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - He Wang
- Department of Physics, University of Miami, Coral Gables, Florida 33146, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Giannis Mpourmpakis
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|