1
|
Katsuno H, Kimura Y, Yamazaki T, Takigawa I. Machine Learning Refinement of In Situ Images Acquired by Low Electron Dose LC-TEM. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:77-84. [PMID: 38285924 DOI: 10.1093/micmic/ozad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/21/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
We have studied a machine learning (ML) technique for refining images acquired during in situ observation using liquid-cell transmission electron microscopy. Our model is constructed using a U-Net architecture and a ResNet encoder. For training our ML model, we prepared an original image dataset that contained pairs of images of samples acquired with and without a solution present. The former images were used as noisy images, and the latter images were used as corresponding ground truth images. The number of pairs of image sets was 1,204, and the image sets included images acquired at several different magnifications and electron doses. The trained model converted a noisy image into a clear image. The time necessary for the conversion was on the order of 10 ms, and we applied the model to in situ observations using the software Gatan DigitalMicrograph (DM). Even if a nanoparticle was not visible in a view window in the DM software because of the low electron dose, it was visible in a successive refined image generated by our ML model.
Collapse
Affiliation(s)
- Hiroyasu Katsuno
- Emerging Media Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Ishikawa, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819 Hokkaido, Japan
| | - Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819 Hokkaido, Japan
| | - Ichigaku Takigawa
- Institute for Liberal Arts and Sciences, Kyoto University, 302 Konoe-kae, 69 Konoe-cho, Sakyo-ku, Kyoto, 606-8315 Kyoto, Japan
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021 Hokkaido, Japan
| |
Collapse
|
2
|
Kurisaki I, Suzuki M. Simulation toolkits at the molecular scale for trans-scale thermal signaling. Comput Struct Biotechnol J 2023; 21:2547-2557. [PMID: 37102156 PMCID: PMC10123322 DOI: 10.1016/j.csbj.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Thermogenesis is a physiological activity of releasing heat that originates from intracellular biochemical reactions. Recent experimental studies discovered that externally applied heat changes intracellular signaling locally, resulting in global changes in cell morphology and signaling. Therefore, we hypothesize an inevitable contribution of thermogenesis in modulating biological system functions throughout the spatial scales from molecules to individual organisms. One key issue examining the hypothesis, namely, the "trans-scale thermal signaling," resides at the molecular scale on the amount of heat released via individual reactions and by which mechanism the heat is employed for cellular function operations. This review introduces atomistic simulation tool kits for studying the mechanisms of thermal signaling processes at the molecular scale that even state-of-the-art experimental methodologies of today are hardly accessible. We consider biological processes and biomolecules as potential heat sources in cells, such as ATP/GTP hydrolysis and multiple biopolymer complex formation and disassembly. Microscopic heat release could be related to mesoscopic processes via thermal conductivity and thermal conductance. Additionally, theoretical simulations to estimate these thermal properties in biological membranes and proteins are introduced. Finally, we envisage the future direction of this research field.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Waseda Research Institute for Science and Engineering, Waseda University, Bldg. No.55, S Tower, 4th Floor, 3–4-1 Okubo Shinjuku-ku, Tokyo 169–8555, Japan
- Corresponding authors.
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, 3–2 Yamadaoka, Suita, Osaka 565–0871, Japan
- Corresponding authors.
| |
Collapse
|
3
|
Xing Y, Andrikopoulos N, Zhang Z, Sun Y, Ke PC, Ding F. Modulating Nanodroplet Formation En Route to Fibrillization of Amyloid Peptides with Designed Flanking Sequences. Biomacromolecules 2022; 23:4179-4191. [PMID: 36137260 PMCID: PMC9618360 DOI: 10.1021/acs.biomac.2c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble oligomers populating early amyloid aggregation can be regarded as nanodroplets of liquid-liquid phase separation (LLPS). Amyloid peptides typically contain hydrophobic aggregation-prone regions connected by hydrophilic linkers and flanking sequences, and such a sequence hydropathy pattern drives the formation of supramolecular structures in the nanodroplets and modulates subsequent fibrillization. Here, we studied LLPS and fibrillization of coarse-grained amyloid peptides with increasing flanking sequences. Nanodroplets assumed lamellar, cylindrical micellar, and spherical micellar structures with increasing peptide hydrophilic/hydrophobic ratios, and such morphologies governed subsequent fibrillization processes. Adding glycine-serine repeats as flanking sequences to Aβ16-22, the amyloidogenic core of amyloid-β, our computational predictions of morphological transitions were corroborated experimentally. The uncovered inter-relationships between the peptide sequence pattern, oligomer/nanodroplet morphology, and fibrillization pathway, kinetics, and structure may contribute to our understanding of pathogenic amyloidosis in aging, facilitate future efforts ameliorating amyloidosis through peptide engineering, and aid in the design of novel amyloid-based functional nanobiomaterials and nanocomposites.
Collapse
Affiliation(s)
- Yanting Xing
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
4
|
Kurisaki I, Tanaka S. Computational prediction of heteromeric protein complex disassembly order using hybrid Monte Carlo/molecular dynamics simulation. Phys Chem Chem Phys 2022; 24:10575-10587. [PMID: 35445673 DOI: 10.1039/d2cp00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The physicochemical entities comprising the biological phenomena in the cell form a network of biochemical reactions and the activity of such a network is regulated by multimeric protein complexes. Mass spectroscopy (MS) experiments and multimeric protein docking simulations based on structural bioinformatics techniques have revealed the molecular-level stoichiometry and static configuration of subcomplexes in their bound forms, thus revealing the subcomplex population and formation orders. Meanwhile, these methodologies are not designed to straightforwardly examine the temporal dynamics of multimeric protein assembly and disassembly, essential physicochemical properties to understand the functional expression mechanisms of proteins in the biological environment. To address this problem, we have developed an atomistic simulation in the framework of the hybrid Monte Carlo/molecular dynamics (hMC/MD) method and succeeded in observing the disassembly of a homomeric pentamer of the serum amyloid P component protein in an experimentally consistent order. In this study, we improved the hMC/MD method to examine the disassembly processes of the tryptophan synthase tetramer, a paradigmatic heteromeric protein complex in MS studies. We employed the likelihood-based selection scheme to determine a dissociation-prone subunit pair at every hMC/MD simulation cycle and achieved highly reliable predictions of the disassembly orders without a priori knowledge of the MS experiments and structural bioinformatics simulations. The success rate for the experimentally-observed disassembly order is over 0.9. We similarly succeeded in reliable predictions for three other tetrameric protein complexes. These achievements indicate the potential applicability of our hMC/MD approach as a general-purpose methodology to obtain microscopic and physicochemical insights into multimeric protein complex formation.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
5
|
Yuan M, Tang X, Han W. Anatomy and Formation Mechanisms of Early Amyloid-β Oligomers with Lateral Branching: Graph Network Analysis on Large-Scale Simulations. Chem Sci 2022; 13:2649-2660. [PMID: 35356670 PMCID: PMC8890322 DOI: 10.1039/d1sc06337e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Oligomeric amyloid-β aggregates (AβOs) effectively trigger Alzheimer's disease-related toxicity, generating great interest in understanding their structures and formation mechanisms. However, AβOs are heterogeneous and transient, making their structure and formation difficult to study. Here, we performed graph network analysis of tens of microsecond massive simulations of early amyloid-β (Aβ) aggregations at near-atomic resolution to characterize AβO structures with sizes up to 20-mers. We found that AβOs exhibit highly curvilinear, irregular shapes with occasional lateral branches, consistent with recent cryo-electron tomography experiments. We also found that Aβ40 oligomers were more likely to develop branches than Aβ42 oligomers, explaining an experimental observation that only Aβ40 was trapped in network-like aggregates and exhibited slower fibrillization kinetics. Moreover, AβO architecture dissection revealed that their curvilinear appearance is related to the local packing geometries of neighboring peptides and that Aβ40's greater branching ability originates from specific C-terminal interactions at branching interfaces. Finally, we demonstrate that whether Aβ oligomerization causes oligomers to elongate or to branch depends on the sizes and shapes of colliding aggregates. Collectively, this study provides bottom-up structural information for understanding early Aβ aggregation and AβO toxicity. Graph network analysis on large-scale simulations uncovers the differential branching behaviours of large Aβ40 and Aβ42 oligomers.![]()
Collapse
Affiliation(s)
- Miao Yuan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Xuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
6
|
Kimura Y, Katsuno H, Yamazaki T. Possible embryo and precursor of crystalline nuclei of calcium carbonate observed by LC-TEM. Faraday Discuss 2022; 235:81-94. [DOI: 10.1039/d1fd00125f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several different building blocks or precursors play an important role in the early stages of crystallization of calcium carbonate (CaCO3). Substantial number of studies have been conducted to understand the...
Collapse
|
7
|
Kurisaki I, Tanaka S. Reaction Pathway Sampling and Free-Energy Analyses for Multimeric Protein Complex Disassembly by Employing Hybrid Configuration Bias Monte Carlo/Molecular Dynamics Simulation. ACS OMEGA 2021; 6:4749-4758. [PMID: 33644582 PMCID: PMC7905796 DOI: 10.1021/acsomega.0c05579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/27/2021] [Indexed: 05/08/2023]
Abstract
Physicochemical characterization of multimeric biomacromolecule assembly and disassembly processes is a milestone to understand the mechanisms for biological phenomena at the molecular level. Mass spectroscopy (MS) and structural bioinformatics (SB) approaches have become feasible to identify subcomplexes involved in assembly and disassembly, while they cannot provide atomic information sufficient for free-energy calculation to characterize transition mechanism between two different sets of subcomplexes. To combine observations derived from MS and SB approaches with conventional free-energy calculation protocols, we here designed a new reaction pathway sampling method by employing hybrid configuration bias Monte Carlo/molecular dynamics (hcbMC/MD) scheme and applied it to simulate the disassembly process of serum amyloid P component (SAP) pentamer. The results we obtained are consistent with those of the earlier MS and SB studies with respect to SAP subcomplex species and the initial stage of SAP disassembly processes. Furthermore, we observed a novel dissociation event, ring-opening reaction of SAP pentamer. Employing free-energy calculation combined with the hcbMC/MD reaction pathway trajectories, we moreover obtained experimentally testable observations on (1) reaction time of the ring-opening reaction and (2) importance of Asp42 and Lys117 for stable formation of SAP oligomer.
Collapse
|