1
|
Yang Q, Hosseini E, Yao P, Pütz S, Gelléri M, Bonn M, Parekh SH, Liu X. Self-Blinking Thioflavin T for Super-resolution Imaging. J Phys Chem Lett 2024; 15:7591-7596. [PMID: 39028951 PMCID: PMC11299178 DOI: 10.1021/acs.jpclett.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Thioflavin T (ThT) is a typical dye used to visualize the aggregation and formation of fibrillar structures, e.g., amyloid fibrils and peptide nanofibrils. ThT has been considered to produce stable fluorescence when interacting with aggregated proteins. For single-molecule localization microscopy (SMLM)-based optical super-resolution imaging, a photoswitching/blinking fluorescence property is required. Here we demonstrate that, in contrast to previous reports, ThT exhibits intrinsic stochastic blinking properties, without the need for blinking imaging buffer, in stable binding conditions. The blinking properties (photon number, blinking time, and on-off duty cycle) of ThT at the single-molecule level (for ultralow concentrations) were investigated under different conditions. As a proof of concept, we performed SMLM imaging of ThT-labeled α-synuclein fibrils measured in air and PBS buffer.
Collapse
Affiliation(s)
- Qiqi Yang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Elnaz Hosseini
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Peigen Yao
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sabine Pütz
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Márton Gelléri
- Institute
of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, University of
Texas at Austin, Austin, Texas 78712, United States
| | - Xiaomin Liu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
2
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
3
|
Rusakov K, Demianiuk S, Jalonicka E, Hanczyc P. Cavity Lasing Characteristics of Thioflavin T and Thioflavin X in Different Solvents and Their Interaction with DNA for the Controlled Reduction of a Light Amplification Threshold in Solid-State Biofilms. ACS APPLIED OPTICAL MATERIALS 2023; 1:1922-1929. [PMID: 38149104 PMCID: PMC10749465 DOI: 10.1021/acsaom.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 12/28/2023]
Abstract
The lasing characteristics of Thioflavin T (ThT) and Thioflavin X (ThX) dyes were investigated in solvents with increasing viscosity: water, ethanol, butanol, ethylene glycol, and glycerol and three forms of DNA (double-helix natural, fragmented, and aggregated). The results identified that lasing thresholds and photostability depend on three critical factors: the solvation shell surrounding dye molecules, the organization of their dipole moments, which is driven by the DNA structure, and the molecules diffusion coefficient in the excitation focal spot. The research highlights that dye doped to DNA accumulated in binding sites fosters long-range dye orientation, facilitating a marked reduction of lasing thresholds in the liquid phase as well as amplified spontaneous emission (ASE) thresholds in the solid state. Leveraging insights from lasing characteristics obtained in liquid, ASE in the solid state was optimized in a controlled way by changing the parameters influencing the DNA structure, i.e., magnesium salt addition, heating, and sonication. The modifications led to a large decrease in the ASE thresholds in the dye-doped DNA films. It was shown that the examination of lasing in cavities can be useful for preparing optical materials with improved architectures and functionalities for solid-state lasers.
Collapse
Affiliation(s)
- K. Rusakov
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Faculty
of Construction and Environmental Engineering, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - S. Demianiuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - E. Jalonicka
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - P. Hanczyc
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Hajda A, Grelich-Mucha M, Rybczyński P, Ośmiałowski B, Zaleśny R, Olesiak-Bańska J. BF 2-Functionalized Benzothiazole Amyloid Markers: Effect of Donor Substituents on One- and Two-Photon Properties. ACS APPLIED BIO MATERIALS 2023; 6:5676-5684. [PMID: 38060806 PMCID: PMC10731634 DOI: 10.1021/acsabm.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Investigation of amyloids with the aid of fluorescence microscopy provides crucial insights into the development of numerous diseases associated with the formation of aggregates. Here, we present a series of BF2-functionalized benzothiazoles with electron-donating methoxy group(s), which are tested as amyloid fluorescent markers. We evaluate how the position of donor functional group(s) influences optical properties (fluorescence lifetime (τ) and fluorescence quantum yield (FQY)) in a solution and upon binding to amyloids. We elucidate the importance of surrounding environmental factors (hydrogen-bonding network, polarity, and viscosity) on the observed changes in FQY and evaluate how the localization of a donor influences radiative and nonradiative decay pathways. We conclude that a donor attached to the benzothiazole ring contributes to the increment of radiative decay pathways upon binding to amyloids (kr), while the donor attached to the flexible part of a molecule (with rotational freedom) contributes to a decrease in nonradiative decay pathways (knr). We find that the donor-acceptor-donor architecture allows us to obtain 58 times higher FQY of the dye upon binding to bovine insulin amyloids. Finally, we measure two-photon absorption (2PA) cross sections (σ2) of the dyes and their change upon binding by the two-photon excited fluorescence (2PEF) technique. Measurements reveal that dyes that exhibit the increase/decrease of σ2 values when transferred from highly polar solvents to CHCl3 present a similar behavior upon amyloid binding. Our 2PA experimental values are supported by quantum mechanics/molecular mechanics (QM/MM) simulations. Despite this trend, the values of σ2 are not the same, which points out the importance of two-photon absorption measurements of amyloid-dye complexes in order to understand the performance of 2P probes upon binding.
Collapse
Affiliation(s)
- Agata Hajda
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Manuela Grelich-Mucha
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Patryk Rybczyński
- Faculty
of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń PL-87-100, Poland
| | - Borys Ośmiałowski
- Faculty
of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń PL-87-100, Poland
| | - Robert Zaleśny
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Joanna Olesiak-Bańska
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| |
Collapse
|
5
|
Wang W, Qu L, Cui Z, Lu F, Li L, Liu F. Citrus Flavonoid Hesperetin Inhibits α-Synuclein Fibrillogenesis, Disrupts Mature Fibrils, and Reduces Their Cytotoxicity: In Vitro and In Vivo Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16174-16183. [PMID: 37870747 DOI: 10.1021/acs.jafc.3c06816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Misfolding and subsequent fibrillogenesis of α-synuclein (αSN) significantly influence the development of Parkinson's disease (PD). This study reports the inhibitory effect of citrus flavonoid hesperetin (Hst) on αSN fibrillation. Based on thioflavin T fluorometry and atomic force microscopy studies, Hst inhibited αSN fibrillation by interfering with initial nucleation and slowing the elongation rate. Furthermore, the inhibitory effect was concentration-dependent with a half-maximal inhibitory concentration of 24.4 μM. Cytotoxicity experiments showed that 100 μM Hst significantly reduced the cytotoxicity of αSN aggregates and maintained 98.4% cell activity. In addition, Hst disassembled the preprepared αSN fibrils into smaller and less-toxic aggregates. Excitingly, supplementation with 100 μM Hst inhibited the accumulation of 36.3% αSN in NL5901 and restored the amyloid-induced reduction in NL5901 lipid abundance, extending the mean lifespan of NL5901 to 23 d. These findings could support the use of Hst as a dietary supplement to regulate αSN fibrillation and prevent the development of PD.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Li Li
- College of Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, P. R. China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
Di Nanni A, Saw RS, Battisti UM, Bowden GD, Boeckermann A, Bjerregaard-Andersen K, Pichler BJ, Herfert K, Herth MM, Maurer A. A Fluorescent Probe as a Lead Compound for a Selective α-Synuclein PET Tracer: Development of a Library of 2-Styrylbenzothiazoles and Biological Evaluation of [ 18F]PFSB and [ 18F]MFSB. ACS OMEGA 2023; 8:31450-31467. [PMID: 37663501 PMCID: PMC10468942 DOI: 10.1021/acsomega.3c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
A method to detect and quantify aggregated α-synuclein (αSYN) fibrils in vivo would drastically impact the current understanding of multiple neurodegenerative diseases, revolutionizing their diagnosis and treatment. Several efforts have produced promising scaffolds, but a notable challenge has hampered the establishment of a clinically successful αSYN positron emission tomography (PET) tracer: the requirement of high selectivity over the other misfolded proteins amyloid β (Aβ) and tau. By designing and screening a library of 2-styrylbenzothiazoles based on the selective fluorescent probe RB1, this study aimed at developing a selective αSYN PET tracer. [3H]PiB competition binding assays identified PFSB (Ki = 25.4 ± 2.3 nM) and its less lipophilic analogue MFSB, which exhibited enhanced affinity to αSYN (Ki = 10.3 ± 4.7 nM) and preserved selectivity over Aβ. The two lead compounds were labeled with fluorine-18 and evaluated using in vitro autoradiography on human brain slices, where they demonstrated up to 4-fold increased specific binding in MSA cases compared to the corresponding control, reasonably reflecting selective binding to αSYN pathology. In vivo PET imaging showed [18F]MFSB successfully crosses the blood-brain barrier (BBB) and is taken up in the brain (SUV = 1.79 ± 0.02). Although its pharmacokinetic profile raises the need for additional structural optimization, [18F]MFSB represents a critical step forward in the development of a successful αSYN PET tracer by overcoming the major challenge of αSYN/Aβ selectivity.
Collapse
Affiliation(s)
- Adriana Di Nanni
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
| | - Ran Sing Saw
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
| | - Umberto M. Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medicinal Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Gregory D. Bowden
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Adam Boeckermann
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
| | | | - Bernd J. Pichler
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Kristina Herfert
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medicinal Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej
9, 2100 Copenhagen, Denmark
| | - Andreas Maurer
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Röntgenweg 13, 72076 Tübingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Zhang P, Wang X, Wang X, Huang C, James TD, Sun X, Qian X. Chemoselective Fluorogenic Bioconjugation of Vicinal Dithiol-Containing Proteins for Live Cellular Imaging via Small Molecular Conjugate Acceptors. Anal Chem 2023; 95:11953-11959. [PMID: 37490273 DOI: 10.1021/acs.analchem.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
To develop small molecular fluorogenic tools for the chemoselective labeling of vicinal dithiol-containing proteins (VDPs) in live cells is important for studying intracellular redox homeostasis. With this research, we developed small molecule-based fluorescent probes, achieving selective labeling of VDPs through thiol-thiol substitutions on bisvinylogous thioester conjugated acceptors (IDAs). Initially, IDAs demonstrated its ability to bridge vicinal cysteine-sulfhydryls on a peptide as a mimic. Then, the peptide complex could be decoupled to recover the original peptide-SH in the presence of dithiothreitol. Furthermore, fluorometric signal amplification of the fluorescent probes occurred with high sensitivity, low limit of detection, and selectivity toward vicinal dithiols on reduced bovine serum albumin, as an example of real world VDPs. More importantly, the probes were utilized successfully for labeling of endogenous VDPs at different redox states in live cells. Thus, the bisvinylogous thioester-based receptor as a functional probe represents a new platform for uncovering the function of VDPs in live cells.
Collapse
Affiliation(s)
- Peng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, People's Republic of China
| | - Xuechuan Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Xiao Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, No. 100 Guilin Road, Shanghai 200234, People's Republic of China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an 710049, People's Republic of China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
8
|
Layek S, Bera N, Nandi PK, Sarkar N. Insights into the Strong Emission Enhancement of Molecular Rotor Thioflavin T in Aqueous Cellulose Nanocrystal Dispersion: White Light Generation in Protein and Micellar Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37243621 DOI: 10.1021/acs.langmuir.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Thioflavin t (THT) is a well-known molecular rotor extensively used to detect amyloid-like structures. But THT shows very weak emission in water. In this article, we have found that THT shows very strong emission in the presence of cellulose nanocrystals (CNCs). Steady-state and time-resolved emission techniques have been used to study the strong emission of THT in aqueous CNC dispersion. The time-resolved study showed that in the presence of CNCs, the lifetime increased by ∼1500 fold compared to pure water (<1 ps). To know the nature of interaction and also the reason for this increase in emission zeta potential, stimuli-dependent and temperature-dependent studies have been carried out. These studies proposed that electrostatic interaction is the main factor for this binding of THT with CNCs. Further, the addition of another anionic lipophilic dye, merocyanine 540 (MC540), with CNCs-THT in both BSA protein (CIE: 0.33, 0.32) and TX-100 micellar (4.5 mM) (CIE: 0.32, 0.30) solutions produced excellent white light emission. Lifetime decay and absorption studies proposed a possible fluorescence resonance energy transfer mechanism in this generation of white light emission.
Collapse
Affiliation(s)
- Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 West Bengal, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 West Bengal, India
| |
Collapse
|
9
|
Chappard A, Leighton C, Saleeb RS, Jeacock K, Ball SR, Morris K, Kantelberg O, Lee J, Zacco E, Pastore A, Sunde M, Clarke DJ, Downey P, Kunath T, Horrocks MH. Single-Molecule Two-Color Coincidence Detection of Unlabeled alpha-Synuclein Aggregates. Angew Chem Int Ed Engl 2023; 62:e202216771. [PMID: 36762870 PMCID: PMC10946743 DOI: 10.1002/anie.202216771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/11/2023]
Abstract
Protein misfolding and aggregation into oligomeric and fibrillar structures is a common feature of many neurogenerative disorders. Single-molecule techniques have enabled characterization of these lowly abundant, highly heterogeneous protein aggregates, previously inaccessible using ensemble averaging techniques. However, they usually rely on the use of recombinantly-expressed labeled protein, or on the addition of amyloid stains that are not protein-specific. To circumvent these challenges, we have made use of a high affinity antibody labeled with orthogonal fluorophores combined with fast-flow microfluidics and single-molecule confocal microscopy to specifically detect α-synuclein, the protein associated with Parkinson's disease. We used this approach to determine the number and size of α-synuclein aggregates down to picomolar concentrations in biologically relevant samples.
Collapse
Affiliation(s)
- Alexandre Chappard
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Craig Leighton
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
- Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghEH16 4UUUK
| | - Rebecca S. Saleeb
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Kiani Jeacock
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Sarah R. Ball
- School of Medical SciencesFaculty of Medicine and Health, and Sydney NanoThe University of SydneySydneyNSW 2006Australia
| | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Owen Kantelberg
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Ji‐Eun Lee
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Elsa Zacco
- Centre for Human Technologies (CHT)Istituto Italiano di Tecnologia (IIT)Via Enrico Melen, 8316152GenovaItaly
| | - Annalisa Pastore
- European Synchrotron Radiation Facility71 Ave des Martyrs38000GrenobleFrance
| | - Margaret Sunde
- School of Medical SciencesFaculty of Medicine and Health, and Sydney NanoThe University of SydneySydneyNSW 2006Australia
| | - David J. Clarke
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | | | - Tilo Kunath
- Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghEH16 4UUUK
| | - Mathew H. Horrocks
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| |
Collapse
|
10
|
Chappard A, Leighton C, Saleeb RS, Jeacock K, Ball SR, Morris K, Kantelberg O, Lee J, Zacco E, Pastore A, Sunde M, Clarke DJ, Downey P, Kunath T, Horrocks MH. Single-Molecule Two-Color Coincidence Detection of Unlabeled alpha-Synuclein Aggregates. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202216771. [PMID: 38516037 PMCID: PMC10952349 DOI: 10.1002/ange.202216771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 02/12/2023]
Abstract
Protein misfolding and aggregation into oligomeric and fibrillar structures is a common feature of many neurogenerative disorders. Single-molecule techniques have enabled characterization of these lowly abundant, highly heterogeneous protein aggregates, previously inaccessible using ensemble averaging techniques. However, they usually rely on the use of recombinantly-expressed labeled protein, or on the addition of amyloid stains that are not protein-specific. To circumvent these challenges, we have made use of a high affinity antibody labeled with orthogonal fluorophores combined with fast-flow microfluidics and single-molecule confocal microscopy to specifically detect α-synuclein, the protein associated with Parkinson's disease. We used this approach to determine the number and size of α-synuclein aggregates down to picomolar concentrations in biologically relevant samples.
Collapse
Affiliation(s)
- Alexandre Chappard
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Craig Leighton
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
- Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghEH16 4UUUK
| | - Rebecca S. Saleeb
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Kiani Jeacock
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Sarah R. Ball
- School of Medical SciencesFaculty of Medicine and Health, and Sydney NanoThe University of SydneySydneyNSW 2006Australia
| | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Owen Kantelberg
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Ji‐Eun Lee
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | - Elsa Zacco
- Centre for Human Technologies (CHT)Istituto Italiano di Tecnologia (IIT)Via Enrico Melen, 8316152GenovaItaly
| | - Annalisa Pastore
- European Synchrotron Radiation Facility71 Ave des Martyrs38000GrenobleFrance
| | - Margaret Sunde
- School of Medical SciencesFaculty of Medicine and Health, and Sydney NanoThe University of SydneySydneyNSW 2006Australia
| | - David J. Clarke
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| | | | - Tilo Kunath
- Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghEH16 4UUUK
| | - Mathew H. Horrocks
- EaStCHEM School of ChemistryThe University of EdinburghEdinburghEH9 3FJUK
| |
Collapse
|
11
|
Haque R, Maity D. Small molecule-based fluorescent probes for the detection of α-Synuclein aggregation states. Bioorg Med Chem Lett 2023; 86:129257. [PMID: 36966976 DOI: 10.1016/j.bmcl.2023.129257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The formation of aggregates due to protein misfolding is encountered in various neurodegenerative diseases. α-Synuclein (α-Syn) aggregation is linked to Parkinson's disease (PD). It is one of the most prevalent neurodegenerative disorders after Alzheimer's disease. Aggregation of α-Syn is associated with Lewy body formation and degeneration of the dopaminergic neurons in the brain. These are the pathological hallmarks of PD progression. α-Syn aggregates in a multi-step process. The native unstructured α-Syn monomers combine to form oligomers, followed by amyloid fibrils, and finally Lewy bodies. Recent evidence suggests that α-Syn oligomerization and fibrils formation play major roles in PD development. α-Syn oligomeric species is the main contributor to neurotoxicity. Therefore, the detection of α-Syn oligomers and fibrils has drawn significant attention for potential diagnostic and therapeutic development. In this regard, the fluorescence strategy has become the most popular approach for following the protein aggregation process. Thioflavin T (ThT) is the most frequently used probe for monitoring amyloid kinetics. Unfortunately, it suffers from several significant drawbacks including the inability to detect neurotoxic oligomers. Researchers developed several small molecule-based advanced fluorescent probes compared to ThT for the detection/monitoring of α-Syn aggregates states. These are summarized here.
Collapse
|
12
|
Wang R, Pang SC, Li JY, Li CL, Liu JM, Wang YM, Chen ML, Li YB. A review of the current research on in vivo and in vitro detection for alpha-synuclein: a biomarker of Parkinson's disease. Anal Bioanal Chem 2023; 415:1589-1605. [PMID: 36688984 DOI: 10.1007/s00216-023-04520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Parkinson's disease is a health-threatening neurodegenerative disease of the elderly with clinical manifestations of motor and non-motor deficits such as tremor palsy and loss of smell. Alpha-synuclein (α-Syn) is the pathological basis of PD, it can abnormally aggregate into insoluble forms such as oligomers, fibrils, and plaques, causing degeneration of nigrostriatal dopaminergic neurons in the substantia nigra in the patient's brain and the formation of Lewy bodies (LBs) and Lewy neuritis (LN) inclusions. As a result, achieving α-Syn aggregate detection in the early stages of PD can effectively stop or delay the progression of the disease. In this paper, we provide a brief overview and analysis of the molecular structures and α-Syn in vivo and in vitro detection methods, such as mass spectrometry, antigen-antibody recognition, electrochemical sensors, and imaging techniques, intending to provide more technological support for detecting α-Syn early in the disease and intervening in the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Rui Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.,College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shu-Chao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jing-Ya Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chan-Lian Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun-Miao Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yu-Ming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mei-Ling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yu-Bo Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
13
|
Nandi S, Sarkar N. A review on recent application of proton transfer photophysics of bipyridine-3,3′-diol in organized assemblies. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Torra J, Viela F, Megías D, Sot B, Flors C. Versatile Near‐Infrared Super‐Resolution Imaging of Amyloid Fibrils with the Fluorogenic Probe CRANAD‐2. Chemistry 2022; 28:e202200026. [DOI: 10.1002/chem.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
| | - Felipe Viela
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
| | - Diego Megías
- Confocal Microscopy Unit; Biotechnology Programme Spanish National Cancer Research Centre (CNIO) Madrid 28029 Spain
| | - Begoña Sot
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) Madrid 28049 Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA) Madrid 28049 Spain
| |
Collapse
|
15
|
Gorka F, Daly S, Pearson CM, Bulovaite E, Zhang YP, Handa A, Grant SGN, Snaddon TN, Needham LM, Lee SF. A Comparative Study of High-Contrast Fluorescence Lifetime Probes for Imaging Amyloid in Tissue. J Phys Chem B 2021; 125:13710-13717. [PMID: 34883017 PMCID: PMC7615715 DOI: 10.1021/acs.jpcb.1c07762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optical imaging of protein aggregates in living and post-mortem tissue can often be impeded by unwanted fluorescence, prompting the need for novel methods to extract meaningful signal in complex biological environments. Historically, benzothiazolium derivatives, prominently Thioflavin T, have been the state-of-the-art fluorescent probes for amyloid aggregates, but their optical, structural, and binding properties typically limit them to in vitro applications. This study compares the use of novel uncharged derivative, PAP_1, with parent Thioflavin T as a fluorescence lifetime imaging probe. This is applied specifically to imaging recombinant α-synuclein aggregates doped into brain tissue. Despite the 100-fold lower brightness of PAP_1 compared to that of Thioflavin T, PAP_1 binds to α-synuclein aggregates with an affinity several orders of magnitude greater than Thioflavin T; thus, we observe a specific decrease in the fluorescence lifetime of PAP_1 bound to α-synuclein aggregates, resulting in a separation of >1.4 standard deviations between PAP_1-stained brain tissue background and α-synuclein aggregates that is not observed with Thioflavin T. This enables contrast between highly fluorescent background tissue and amyloid fibrils that is attributed to the greater affinity of PAP_1 for α-synuclein aggregates, avoiding the substantial off-target staining observed with Thioflavin T.
Collapse
Affiliation(s)
- Felix Gorka
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Physics, Philipps-University Marburg, Marburg, 35032, Germany
| | - Sam Daly
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Colin M Pearson
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Edita Bulovaite
- Genes to Cognition Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Yu P. Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Anoushka Handa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Seth G. N. Grant
- Genes to Cognition Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Thomas N. Snaddon
- Department of Chemistry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Lisa-Maria Needham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Steven F. Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| |
Collapse
|
16
|
Singh R, Chen DG, Wang CH, Lan YC, Liu YH, Chou PT, Chen CT. Tailoring C-6-Substituted Coumarin Scaffolds for Novel Photophysical Properties and Stimuli-Responsive Chromism. J Phys Chem B 2021; 125:11557-11565. [PMID: 34633826 DOI: 10.1021/acs.jpcb.1c08133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A judicious strategy was utilized to envision the substantial regio-positional effects of substituents on the photophysical properties of the 2H-chromen-2-one-3-benzothiazole scaffold-based push-pull framework, named 6-X-CUMs. Among them, 6-NEt2-CUM reveals prominent excited-state intramolecular charge transfer with a large change of dipole moment (Δμ ∼ 18.23 D), hence displaying remarkable emission solvatochromism from the green (536 nm in cyclohexane) to far-red region (714 nm in dimethyl sulfoxide) and a high-temperature sensitivity (-0.23 nm °C-1). These, together with unique basicity and acido-/vaporchromism upon acidification elucidated by NMR and photospectroscopic studies, show stark contrast to the conventional 7-NEt2-CUM. The new series of these tailored 6-X-CUMs represents a new dimension in tailoring the photophysical properties for the development of a promising class of multistimuli-responsive materials.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Deng-Gao Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Chun-Hsiang Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Yi-Cheng Lan
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Chao-Tsen Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC
| |
Collapse
|
17
|
Hanczyc P, Fita P. Laser Emission of Thioflavin T Uncovers Protein Aggregation in Amyloid Nucleation Phase. ACS PHOTONICS 2021; 8:2598-2609. [PMID: 34557567 PMCID: PMC8451393 DOI: 10.1021/acsphotonics.1c00082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/13/2023]
Abstract
There is currently no definitive test for early detection of neurodegeneration which is linked with protein aggregation. Finding methods capable of detecting intermediate states of protein aggregates, named oligomers, is critical for the early stage diagnosis of over 30 neurodegenerative diseases including Alzheimer's or Parkinson's. Currently, fluorescence-based imaging using Thioflavin T (ThT) dye is the gold standard for detecting protein aggregation. It is used to detect aggregation in vitro and in various tissues, including the cerebrospinal fluid (CSF), whereby the disease-related protein recombinant is seeded with the patient's fluid. The major drawback of ThT is its lack of sensitivity to oligomeric forms of protein aggregates. Here, we overcome this limitation by transferring a ThT-oligomer mixture into solid state thin films and detecting fluorescence of ThT amplified in the process of stimulated emission. By monitoring the amplified spontaneous emission (ASE) we achieved a remarkable recognition sensitivity to prefibrillar oligomeric forms of insulin and lysozyme aggregates in vitro, to Aβ42 oligomers in the human protein recombinants seeded with CSF and to Aβ42 oligomers doped into brain tissue. Seeding with Alzheimer patient's CSF containing Aβ42 and Tau aggregates revealed that only Aβ42 oligomers allowed generating ASE. Thus, we demonstrated that, in contrast to the current state-of-the-art, ASE of ThT, a commonly used histological dye, can be used to detect and differentiate amyloid oligomers and evaluate the risk levels of neurodegenerative diseases to potential patients before the clinical symptoms occur.
Collapse
|
18
|
Hanczyc P, Rajchel-Mieldzioć P, Feng B, Fita P. Identification of Thioflavin T Binding Modes to DNA: A Structure-Specific Molecular Probe for Lasing Applications. J Phys Chem Lett 2021; 12:5436-5442. [PMID: 34080857 PMCID: PMC8280760 DOI: 10.1021/acs.jpclett.1c01254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 05/17/2023]
Abstract
The binding mechanism of thioflavin T (ThT) to DNA was studied using polarized light spectroscopy and fluorescence-based techniques in solutions and in solid films. Linear dichroism measurements showed that ThT binds to DNA duplex by intercalation. Time-resolved fluorescence studies revealed a second binding mode which is the external binding to the DNA phosphate groups. Both binding modes represent the nonspecific type of interactions. The studies were complemented with the analysis of short oligonucleotides having DNA cavities. The results indicate that the interplay between three binding modes-intercalation, external binding, and binding inside DNA cavities-determines the effective fluorescence quantum yield of the dye in the DNA structures. External binding was found to be responsible for fluorescence quenching because of energy transfer between intercalated and externally bound molecules. Finally, amplified spontaneous emission (ASE) was successfully generated in the ThT-stained films and used for detecting different DNA structures. ASE measurements show that ThT-stained DNA structures can be used for designing bioderived microlasers.
Collapse
Affiliation(s)
- P. Hanczyc
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - P. Rajchel-Mieldzioć
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - B. Feng
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - P. Fita
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
19
|
Gaur P, Galkin M, Kurochka A, Ghosh S, Yushchenko DA, Shvadchak VV. Fluorescent Probe for Selective Imaging of α-Synuclein Fibrils in Living Cells. ACS Chem Neurosci 2021; 12:1293-1298. [PMID: 33819025 DOI: 10.1021/acschemneuro.1c00090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaques of amyloid fibrils composed of neuronal protein α-synuclein are one of the hallmarks of Parkinson's disease, and their selective imaging is crucial to study the mechanism of its pathogenesis. However, the existing fluorescent probes for amyloids are efficient only in solution and tissue systems, and they are not selective enough for the visualization of amyloid fibrils in living cells. In this study, we present two molecular rotor-based probes RB1 and RB2. These thiazolium probes show affinity to α-synuclein fibrils and turn-on fluorescence response upon interactions. Because of its extended π-conjugation and high rotational degree of freedom, RB1 exhibits a 76 nm red-shift of absorption maxima and 112-fold fluorescence enhancement upon binding to amyloid fibrils. Owing to its strong binding affinity to α-synuclein fibrils, RB1 can selectively stain them in the cytoplasm of living HeLa and SH-SY5Y cells with high optical contrast. RB1 is a cell-permeable and noncytotoxic probe. Taken together, we have demonstrated that RB1 is an amyloid probe with an outstanding absorption red-shift that can be used for intracellular imaging of α-synuclein fibrils.
Collapse
Affiliation(s)
- Pankaj Gaur
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
| | - Maksym Galkin
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, Prague, 12843, Czech Republic
| | - Andrii Kurochka
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
| | - Subrata Ghosh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Dmytro A. Yushchenko
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
| | - Volodymyr V. Shvadchak
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 6, 16610, Czech Republic
| |
Collapse
|