1
|
Zhan X, Chen X, Li C, Jin T, Wang Y, Chen ZN, Wu T, Chen J, Zhuang W. Can Lead-Free Double Halide Perovskites Serve as Proper Photovoltaic Absorber? J Phys Chem Lett 2023; 14:10784-10793. [PMID: 38011674 DOI: 10.1021/acs.jpclett.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The emerging Pb-free double perovskites (DPs) are acknowledged as the most potential nontoxic alternatives to lead halide perovskites for thin-film photovoltaics, yet their photophysical properties significantly lag behind expectations. To tackle this issue, it is imperative to conduct a systematic investigation of the structure and optoelectronic properties and to sift through vast chemical space to extract new types of Pb-free DPs with exceptional optoelectronic characteristics and thermal stability. Through high-throughput first-principal calculations, we demonstrate that apart from a select few Pb-free DPs (e.g., Cs2InSbCl6 and Cs2TlBiBr6), other categories, even with suitable direct electronic bandgaps, exhibit inferior optical absorption due to the inversion symmetry-induced parity-forbidden transitions. The mismatch between the electronic and optical bandgap, thence, casts doubt on the reliability of the electronic bandgap as a criterion for Pb-free DPs in various optoelectronics. The assessed limited thermostability under operational conditions, however, hinders any Pb-free DPs from effectively serving as photovoltaic absorbers. Alongside the compositional engineering discussed above, the prospect of manipulating local-site symmetry and disrupting the parity forbidden transitions in stabilized Pb-free DPs through materials engineering should be recognized as a pivotal and rational avenue toward achieving high performance.
Collapse
Affiliation(s)
- Xingqiang Zhan
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Physics and Energy & College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xian Chen
- College of Artificial Intelligence, Yango University, Fuzhou 350015, P. R. China
| | - Chenchen Li
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Physics and Energy & College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Tan Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yuanxin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, P. R. China
| | - Tianmin Wu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Physics and Energy & College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
2
|
Han X, Zhao Q, Yan X, Meng T, He J. Blocking recombination centers by controlling the charge density of a sulfur vacancy in antimony trisulfide. Phys Chem Chem Phys 2023; 25:32622-32631. [PMID: 38009229 DOI: 10.1039/d3cp05217f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
By performing nonadiabatic molecular dynamics combined with ab initio time-domain density functional theory, we have explored the effects of the charge density of a sulfur vacancy on charge trapping and recombination in antimony trisulfide (Sb2S3). The simulations demonstrate that, compared to an antimony vacancy, the sulfur vacancy generates a high charge density trap state within the band gap. This state acts as the recombination center and provides new channels for charge carrier relaxation. Filling the sulfur vacancy with electron donors elevates the defect state to the Fermi level due to the introduced extra electrons. In contrast, the electron acceptor lowers the charge density of the sulfur vacancy by capturing its local electrons, eliminating the charge recombination center and extending the photo-generated charge carrier lifetime. Additionally, compared with electron injection, hole injection can also decrease the charge density of the trap state via neutralizing its local electronic states, eliminate the trap state within the band gap, and suppress nonradiative electron-hole recombination. This study is expected to shed new light on the blocking recombination centers and provide valuable insights into the design of high-performance solar cells.
Collapse
Affiliation(s)
- Xiao Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qi Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Ting Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
3
|
Lin HW, Lin YP, Huang DD, Chen ZH, Peng YC, Wang ZP, Du KZ, Huang XY. Supramolecular-Interactions-Modulated Photoluminescence in Indium Bromide-Based Isomers. Inorg Chem 2023; 62:18331-18337. [PMID: 37910803 DOI: 10.1021/acs.inorgchem.3c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Here, two isomeric ionic zero-dimensional indium bromide crystals of α (1)/β (2)-[OPy][InBr4(Phen)] (OPy = N-octylpyridinium; Phen = 1,10-phenanthroline) have been isolated simply by changing the cooling conditions in solvothermal syntheses. Structural comparisons indicate their different supramolecular interactions, which can be confirmed by Hirshfeld surface analyses. The crystal 2 has additional hydrogen bonds and π-π interactions; as a result, the more compact stacking of 2 could result in a 10-fold higher photoluminescence (PL) quantum yield (PLQY) than that of 1. Density functional theory calculations confirm the electron transition from the inorganic moiety to the organic ligand, which provides a further understanding of the optical process. This work provides a new idea for designing PL indium-based halides by understanding the structure-PL relationship.
Collapse
Affiliation(s)
- Hao-Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yang-Peng Lin
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Dan-Dan Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Zhi-Hua Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Chen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ze-Ping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Ke-Zhao Du
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Zhuang TH, Lin YM, Lin HW, Guo YL, Li ZW, Du KZ, Wang ZP, Huang XY. Luminescence Enhancement and Temperature Sensing Properties of Hybrid Bismuth Halides Achieved via Tuning Organic Cations. Molecules 2023; 28:molecules28052380. [PMID: 36903625 PMCID: PMC10005380 DOI: 10.3390/molecules28052380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Bismuth-halide-based inorganic-organic hybrid materials (Bi-IOHMs) are desirable in luminescence-related applications due to their advantages such as low toxicity and chemical stability. Herein, two Bi-IOHMs of [Bpy][BiCl4(Phen)] (1, Bpy = N-butylpyridinium, Phen = 1,10-phenanthroline) and [PP14][BiCl4(Phen)]·0.25H2O (2, PP14 = N-butyl-N-methylpiperidinium), containing different ionic liquid cations and same anionic units, have been synthesized and characterized. Single-crystal X-ray diffraction reveals that compounds 1 and 2 crystallize in the monoclinic space group of P21/c and P21, respectively. They both possess zero-dimensional ionic structures and exhibit phosphorescence at room temperature upon excitation of UV light (375 nm for 1, 390 nm for 2), with microsecond lifetime (24.13 μs for 1 and 95.37 μs for 2). Hirshfeld surface analysis has been utilized to visually exhibit the different packing motifs and intermolecular interactions in 1 and 2. The variation in ionic liquids makes compound 2 have a more rigid supramolecular structure than 1, resulting in a significant enhancement in photoluminescence quantum yield (PLQY), that is, 0.68% for 1 and 33.24% for 2. In addition, the ratio of the emission intensities for compounds 1 and 2 shows a correlation with temperature. This work provides new insight into luminescence enhancement and temperature sensing applications involving Bi-IOHMs.
Collapse
Affiliation(s)
- Ting-Hui Zhuang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yi-Min Lin
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hao-Wei Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yan-Ling Guo
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zi-Wei Li
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ke-Zhao Du
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Correspondence: (K.-Z.D.); (Z.-P.W.); (X.-Y.H.); Tel.: +0591-63173145 (X.-Y.H.)
| | - Ze-Ping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (K.-Z.D.); (Z.-P.W.); (X.-Y.H.); Tel.: +0591-63173145 (X.-Y.H.)
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (K.-Z.D.); (Z.-P.W.); (X.-Y.H.); Tel.: +0591-63173145 (X.-Y.H.)
| |
Collapse
|
5
|
Jain U, Soni S, Chauhan N. Application of perovskites in bioimaging: the state-of-the-art and future developments. Expert Rev Mol Diagn 2022; 22:867-880. [PMID: 36254607 DOI: 10.1080/14737159.2022.2135990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recently, the development of perovskite-based nanocrystals for sustainable applications in bioimaging and clinical diagnostics have become a very active area of research. From 2D hybrid to zero-dimensional quantum dots (QDs), perovskites along with a variety of characteristic features, specifically non-linear optoelectronics properties, have attracted enormous research attention. These characteristics can be tuned by the type of cations or anions and their ratio used in host perovskites. Carrier doping and chemical modifications are additional alternatives to control optical and magnetism in radiodiagnostics. AREA COVERED This review begins by explaining the physical phenomena associated with luminescence or optical features of novel perovskites in diagnostic applications. Moreover, reported oxide, halide, doped, and QDs-based nanoprobes were elaborated. At last, the need for novel perovskite development, for example, persistent luminescent and low cytotoxicity is discussed, and the futuristic perspective of perovskites in clinical diagnostics with real-time demonstration is explained. EXPERT OPINION Our article concludes that hybrid perovskites, including metal-free, core-shell nanocomposites-based, and alloy-based perovskites, exhibit tunable bandgap and high photoluminescence quantum yields which ultimately result in high optical features. However, given limited understanding of ion transport mechanisms and dependency on environmental conditions of the perovskites, more research is needed.
Collapse
Affiliation(s)
- Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, India
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, India
| |
Collapse
|
6
|
Wu Y, Chu W, Vasenko AS, Prezhdo OV. Common Defects Accelerate Charge Carrier Recombination in CsSnI 3 without Creating Mid-Gap States. J Phys Chem Lett 2021; 12:8699-8705. [PMID: 34472876 DOI: 10.1021/acs.jpclett.1c02443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead-free metal halide perovskites are environmentally friendly and have favorable electro-optical properties; however, their efficiencies are significantly below the theoretical limit. Using ab initio nonadiabatic molecular dynamics, we show that common intrinsic defects accelerate nonradiative charge recombination in CsSnI3 without creating midgap traps. This is in contrast to Pb-based perovskites, in which many defects have little influence on and even prolong carrier lifetimes. Sn-related defects, such as Sn vacancies and replacement of Sn with Cs are most detrimental, since Sn removal breaks the largest number of bonds and strongly perturbs the Sn-I lattice that supports the carriers. The defects increase the nonadiabatic electron-vibrational coupling and interact strongly with free carrier states. Point defects associated with I atoms are less detrimental, and therefore, CsSnI3 synthesis should be performed in Sn rich conditions. The study provides an atomistic rationalization of why lead-free CsSnI3 exhibits lower photovoltaic efficiency compared to some lead-based perovskites.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Wu T, Wang J. Deep Mining Stable and Nontoxic Hybrid Organic-Inorganic Perovskites for Photovoltaics via Progressive Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57821-57831. [PMID: 33325688 DOI: 10.1021/acsami.0c10371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As promising new-generation sunlight-harvesting materials, hybrid organic-inorganic perovskites (HOIPs) have attracted a great deal of attention because of their outstanding advantage of high-power conversion efficiency and low-cost experimental synthesis. Tremendous chemical space and complexity of HOIPs, however, seriously hinder the applications of traditional trial-and-error and high-throughput density functional theory (HT-DFT) methods. Although the machine learning methods successfully accelerate the discovery of new stable and nontoxic HOIPs for photovoltaics, the performance of the current machine learning strategy is still severely limited by the quality of training input database, resulting in a large chemical space for further exploration. A progressive machine learning strategy is therefore introduced in the current study to investigate the impact of an input database enriched by a previous machine learning study, aiming to provide a more reliable and accurate approach to deep mining of the hidden HOIPs for sunlight harvesting. Enhancement in the performance indicators of a progressive machine learning strategy indicates that the data set generated by the previous round of machine learning study could dramatically enrich the training input database and improve its quality. Further DFT validations confirm that 96 out of 209 machine learning selected candidates have promising band gaps for light harvesting, so the prediction success rate of the current work is significantly enhanced compared to that of the previous work. Current study thence successfully verifies the feasibility of a progressive machine learning strategy for accurate and deep mining of hidden novel functional materials.
Collapse
Affiliation(s)
- Tianmin Wu
- Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China
- Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
| | - Jian Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|