1
|
Kim H, Haddadi Moghaddam M, Wang Z, Kim S, Lee D, Yang H, Jee M, Park D, Kim DS. Strain versus Tunable Terahertz Nanogap Width: A Simple Formula and a Trench below. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2526. [PMID: 37764555 PMCID: PMC10537752 DOI: 10.3390/nano13182526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
A flexible zerogap metallic structure is periodically formed, healing metal cracks on a flexible substrate. Zerogap is continuously tunable from nearly zero to one hundred nanometers by applying compressive strains on the flexible substrate. However, there have been few studies on how the gap width is related to the strain and periodicity, nor the mechanism of tunability itself. Here, based on atomic force microscopy (AFM) measurements, we found that 200 nm-deep nano-trenches are periodically generated on the polymer substrate below the zerogap owing to the strain singularities extant between the first and the second metallic deposition layers. Terahertz and visible transmission properties are consistent with this picture whereby the outer-bending polyethylene terephthalate (PET) substrate controls the gap size linearly with the inverse of the radius of the curvature.
Collapse
Affiliation(s)
- Hwanhee Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (H.K.)
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (H.K.)
| | - Zhihao Wang
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (H.K.)
| | - Sunghwan Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (H.K.)
| | - Dukhyung Lee
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (H.K.)
| | - Hyosim Yang
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (H.K.)
| | - Myongsoo Jee
- Quantum Republic Co., Ltd., Rm 805-6 Bldg 106, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Daehwan Park
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (H.K.)
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (H.K.)
| |
Collapse
|
2
|
Pei C, Wang Y, Ding Y, Li R, Shu W, Zeng Y, Yin X, Wan J. Designed Concave Octahedron Heterostructures Decode Distinct Metabolic Patterns of Epithelial Ovarian Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209083. [PMID: 36764026 DOI: 10.1002/adma.202209083] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/25/2023] [Indexed: 05/05/2023]
Abstract
Epithelial ovarian cancer (EOC) is a polyfactorial process associated with alterations in metabolic pathways. A high-performance screening tool for EOC is in high demand to improve prognostic outcome but is still missing. Here, a concave octahedron Mn2 O3 /(Co,Mn)(Co,Mn)2 O4 (MO/CMO) composite with a heterojunction, rough surface, hollow interior, and sharp corners is developed to record metabolic patterns of ovarian tumors by laser desorption/ionization mass spectrometry (LDI-MS). The MO/CMO composites with multiple physical effects induce enhanced light absorption, preferred charge transfer, increased photothermal conversion, and selective trapping of small molecules. The MO/CMO shows ≈2-5-fold signal enhancement compared to mono- or dual-enhancement counterparts, and ≈10-48-fold compared to the commercialized products. Subsequently, serum metabolic fingerprints of ovarian tumors are revealed by MO/CMO-assisted LDI-MS, achieving high reproducibility of direct serum detection without treatment. Furthermore, machine learning of the metabolic fingerprints distinguishes malignant ovarian tumors from benign controls with the area under the curve value of 0.987. Finally, seven metabolites associated with the progression of ovarian tumors are screened as potential biomarkers. The approach guides the future depiction of the state-of-the-art matrix for intensive MS detection and accelerates the growth of nanomaterials-based platforms toward precision diagnosis scenarios.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Yajie Ding
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yu Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xia Yin
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
3
|
Matsui H, Shoji M, Higano S, Yoda H, Ono Y, Yang J, Misumi T, Fujita A. Infrared Plasmonic Metamaterials Based on Transparent Nanoparticle Films of In 2O 3:Sn for Solar-Thermal Shielding Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49313-49325. [PMID: 36261131 DOI: 10.1021/acsami.2c14257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Three-dimensional nanoparticle (NP) assemblies show interesting optical responses that differ from naturally occurring materials, such as metals, oxides, and semiconductors. In this study, we investigate the optical response of thin films comprising Sn:In2O3 NPs (ITO NP films) based on the correlation between complex permittivity and infrared (IR) reflectance for solar-thermal shielding applications. IR ellipsometry measurements are conducted to clarify the presence of Lorentz resonances in plasmonic metamaterials. The Lorentz resonances are correlated to the electric field strength at interparticle gaps by varying the Sn dopant concentration, as confirmed using finite-difference time-domain (FDTD) simulations. High solar-thermal shielding performance was obtained owing to selective near-IR reflection based on strong Lorentz resonances as the ITO NP films were electrically polarizable but magnetically inactive. Thermal shielding efficiency was demonstrated via a comparison of the air temperature change in a simulated box used as a model house. Additionally, we demonstrate the significance of NP packing density on the enhancement of the near-IR reflectance. The role of interparticle spacing for high near-IR reflectance was revealed by comparing effective medium approximation analyses and FDTD simulations. This relationship was also demonstrated by the reduction of solar-thermal shielding performance when using aggregated ITO NPs. Our work confirmed that the control of complex permittivity in plasmonic metamaterials must be considered in the structural design of transparent and reflective materials for solar-thermal shielding applications.
Collapse
Affiliation(s)
- Hiroaki Matsui
- Department of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miho Shoji
- Central Laboratory, Mitsubishi Materials Co., 14-1002, Mu Koyama, Naka, Ibaraki 311-0102, Japan
| | - Satoko Higano
- Central Laboratory, Mitsubishi Materials Co., 14-1002, Mu Koyama, Naka, Ibaraki 311-0102, Japan
| | - Hidehiko Yoda
- Department of Fundamental Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Yosuke Ono
- Attract to Japan Co., 9-14-9, Takaya Takamigaoka, Higashi-Hiroshima, Hiroshima 739-2115, Japan
| | - Jiaqi Yang
- Department of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Teppei Misumi
- Science & Technology Institute, Co., 3-5-4 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Aki Fujita
- Science & Technology Institute, Co., 3-5-4 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| |
Collapse
|
4
|
Sakamoto M, Saitow KI. Fast, Economical, and Reproducible Sensing from a 2D Si Wire Array: Accurate Characterization by Single Wire Spectroscopy. Anal Chem 2022; 94:6672-6680. [PMID: 35475623 DOI: 10.1021/acs.analchem.1c05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silicon (Si) is promising as a field enhancement material because of its high abundance, low toxicity, and high refractive index. The field enhancement effect intensifies light-matter interactions, which improves photocatalysis, solar cell performance, and sensor sensitivity. To manufacture field enhancement materials on a production scale, the fabrication technique must be simple, cost-effective, fast, and highly reproducible and must produce a high enhancement factor (EF). Herein, we report on an economical and efficient fabrication method for a field enhancement substrate consisting of a two-dimensional Si wire array (2D-SiWA). This substrate was demonstrated as a fluorescence sensor with high sensitivity (EF > 200) and composed of a large area (6.0 mm2). In addition, single wire spectroscopy was used to identify very high reproducibility of the sensor sensitivity in regular regions (97%) and a mixture of regular and irregular regions (87%) of the 2D-SiWA. The large-area Si fluorescence sensor fabrication was cost-effective and rapid and was 50× less expensive, 20×faster, and 60,000×larger than the typical electron beam lithography method.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Ken-Ichi Saitow
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.,Department of Materials Science, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.,Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
Hashimoto S, Uenobo Y, Takao R, Yuyama KI, Shoji T, Linklater DP, Ivanova E, Juodkazis S, Kameyama T, Torimoto T, Tsuboi Y. Incoherent Optical Tweezers on Black Titanium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27586-27593. [PMID: 34085525 DOI: 10.1021/acsami.1c04929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical tweezers enable the manipulation of micro- and nanodielectric particles through entrapment using a tightly focused laser. Generally, optical trapping of submicron size particles requires high-intensity light in the order of MW/cm2. Here, we demonstrate a technique of stable optical trapping of submicron polymeric beads on nanostructured titanium surfaces (black-Ti) without the use of lasers. Fluorescent polystyrene beads with a diameter d = 20-500 nm were successfully trapped on black-Ti by low-intensity focused illumination of incoherent light at λ = 370 m from a Hg lamp. Light intensity was 5.5 W/cm2, corresponding to a reduced light intensity of 6 orders of magnitude. Upon switching off illumination, trapped particles were released from the illuminated area, indicating that trapping was optically driven and reversible. Such trapping behavior was not observed on nonstructured Ti surfaces or on nanostructured silicon surfaces. Thus, the Ti nanostructures were demonstrated to play a key role.
Collapse
Affiliation(s)
- Sayaka Hashimoto
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yuki Uenobo
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Ryota Takao
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Ken-Ichi Yuyama
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Tatsuya Shoji
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan
| | - Denver P Linklater
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Elena Ivanova
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
- World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tatsuya Kameyama
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tsukasa Torimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yasuyuki Tsuboi
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
6
|
Sakamoto M, Terada S, Mizutani T, Saitow KI. Large Field Enhancement of Nanocoral Structures on Porous Si Synthesized from Rice Husks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1105-1113. [PMID: 33332080 DOI: 10.1021/acsami.0c14248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicon (Si) is a highly abundant, environmentally benign, and durable material and is the most popular semiconductor material; and it is used for the field enhancement of dielectric materials. Porous Si (PSi) exhibits high functionality due to its specific structure. However, the field enhancement of PSi has not been clarified sufficiently. Herein, we present the field enhancement of PSi by the fluorescence intensity enhancement of a dye molecule. The raw material used for producing PSi was rice husk, a biomass material. A nanocoral structure, consisting of spheroidal structures on the surface of PSi, was observed when PSi was subjected to chemical processes and pulsed laser melting, and it demonstrated large field enhancement with an enhancement factor (EF) of up to 545. Confocal microscopy was used for EF mapping of samples before and after laser melting, and the maps were superimposed on nanoscale scanning electron microscope images to highlight the EF effect as a function of microstructure. Nanocoral Si with high EF values were also evaluated by analyzing the porosity from gas adsorption measurements. Nanocoral Si was responsible for the high EF, according to thermodynamic calculations and agreement between experimental and calculation results as determined by Mie scattering theory.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shiho Terada
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tomoya Mizutani
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ken-Ichi Saitow
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|