1
|
Bañares MA, Alcolea-Rodriguez V, Portela R. A catalytic perspective to nanomaterials reactivity-based toxicity; implications for single- and multiple-component nanomaterials (nanocomposites). NANOIMPACT 2025; 37:100542. [PMID: 39814225 DOI: 10.1016/j.impact.2025.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The extended use of a given product normally precedes concerns about it. The reactivity-based nanotoxicity is a major concern that must be tackled from its fundamental understanding to its regulatory management. Moreover, concepts and ideas must seamlessly flow between relevant performers. Functional nanomaterials have been used in many fields; among these, catalysis is probably the earliest more extended application of nanomaterials, these are engineered to afford specific properties, and are typically known as Engineered Nanomaterials (ENMs). Heterogenous catalysis shares its basic features with reactivity-based toxicity. In both cases, we are dealing with phenomena triggered by reactions occurring at the surface of the nanomaterial. Therefore, the extensive knowledge in heterogeneous catalysis is key to understanding reactivity-based nanotoxicology. In this regard, determining surface exposure is fundamental to mechanistically comprehend dose-response, similar to how catalysis shifted from mass-based to surface-centered metrics. Catalysis science made a further refinement iteration: reactions occur at surfaces, though not all surfaces are necessarily reactive, making it crucial to normalize per reactive site. This perspective focuses on two key aspects that link heterogeneous catalysis and reactivity-based nanotoxicity: the reactive sites on the surface of nanomaterials and how different combinations of nanomaterials appear and perform. A comment is also made regarding the somewhat vague term 'multicomponent nanomaterial,' which is contrasted with the well-defined, established, and widely accepted term 'nanocomposite' within the chemical community. Clear and precise terminology and concepts are essential for effective research and regulation.
Collapse
Affiliation(s)
| | | | - Raquel Portela
- CSIC - Insituto de Catálisis y Petroleoquímica, Madrid, Spain
| |
Collapse
|
2
|
Vázquez Quesada J, Bernart S, Studt F, Wang Y, Fink K. CO adsorption on CeO2(111): A CCSD(T) benchmark study using an embedded-cluster model. J Chem Phys 2024; 161:224707. [PMID: 39660658 DOI: 10.1063/5.0231189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
A benchmark model that combines an embedded-cluster approach for ionic surfaces with wavefunction-based methods to predict the vibrational frequencies of molecules adsorbed on surfaces is presented. As a representative case, the adsorption of CO on the lowest index non-polar and most stable facet of CeO2, that is, (111) was studied. The CO harmonic vibrational frequencies were not scaled semiempirically but explicitly corrected for anharmonic effects, which amount to about 25 cm-1 with all tested methods. The second-order Møller-Plesset perturbation method (MP2) tends to underestimate the CO harmonic frequency by about 40-45 cm-1 in comparison with the results obtained with the coupled-cluster singles and doubles with perturbational treatment of triple excitation method [CCSD(T)] and independently from the basis set used. The best estimate for the CO vibrational frequency (low-coverage case) differs by 12 cm-1 with the experimental value obtained by infrared reflexion absorption spectroscopy of 1 monolayer CO adsorbed on the oxidized CeO2(111) surface. In addition, a conservative estimate of the adsorption energy of about -0.22 ± -0.07 eV obtained at the CCSD(T) level confirms the physisorption character of the adsorption of CO on the CeO2(111) surface.
Collapse
Affiliation(s)
- Juana Vázquez Quesada
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Sarah Bernart
- Institut für Katalyseforschung und Technologie, Karlsruhe Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Felix Studt
- Institut für Katalyseforschung und Technologie, Karlsruhe Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Yuemin Wang
- Institut für Funktionelle Grenzflächen, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Karin Fink
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Yang C, Idriss H, Wang Y, Wöll C. Surface Structure and Chemistry of CeO 2 Powder Catalysts Determined by Surface-Ligand Infrared Spectroscopy (SLIR). Acc Chem Res 2024; 57:3316-3326. [PMID: 39476853 PMCID: PMC11580167 DOI: 10.1021/acs.accounts.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/20/2024]
Abstract
ConspectusCerium is the most abundant rare earth element in the Earth's crust. Its most stable oxide, cerium dioxide (CeO2, ceria), is increasingly utilized in the field of catalysis. It can catalyze redox and acid-base reactions, and serve as a component of electrocatalysts and even photocatalysts. As one of the most commonly used in situ/operando characterization methods in catalysis, infrared (IR) spectroscopy is routinely employed to monitor reaction intermediates on the surface of solid catalysts, offering profound insight into reaction mechanisms. Additionally, IR vibrational frequencies of probe molecules adsorbed on solid catalysts provide detailed information about their structure and chemical states. Numerous studies in the literature have utilized carbon monoxide and methanol as IR probe molecules on ceria particles. However, assigning their vibrational frequencies is often highly controversial due to the great complexity of the actual surface of ceria particles, which include differently oriented crystal facets, reconstructions, defects, and other structural variations. In our laboratory, taking bulk ceria single crystals with distinct orientations as model systems, we employed a highly sensitive ultrahigh vacuum (UHV) infrared spectroscopy system (THEO) to study the adsorption of CO and methanol. It turns out that the theoretical calculations adopting hybrid functionals (HSE06) can bring the theoretical predictions into agreement with the experimental results for the CO frequencies on ceria single crystal surfaces. The obtained frequencies serve as reliable references to resolve the long-standing controversial assignments for the IR bands of CO and methanol adsorbed on ceria particles. Furthermore, these characteristic frequencies allow for the determination of orientations, oxidation states and restructuring of exposed crystal facets of ceria nanoparticles, which is applicable from UHV conditions to industrially relevant pressures of up to 1 bar, and from low temperatures (∼65 K) to high temperatures (∼1000 K). We also used molecular oxygen as a probe molecule to investigate its interaction with the ceria surface, crucial for understanding ceria's redox properties. Our findings reveal that the localization of oxygen vacancies and the mechanism of dioxygen activation are highly sensitive to surface orientations. We provided the first spectroscopic evidence showing that the oxygen vacancies on ceria (111) surfaces tend to localize in deep layers. In addition, we employed N2O as a probe molecule to elucidate the origin of the photocatalytic activity of ceria and showed that the photocatalytic activity is highly sensitive to the surface orientation (i.e., surface coordination structure). This Account shows that probe-molecule infrared spectroscopy serves as a powerful in situ/operando tool for studying the surface structure and chemistry of solid catalysts, and the knowledge gained through the "Surface Science" approach is essential as a crucial benchmark.
Collapse
Affiliation(s)
- Chengwu Yang
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Hicham Idriss
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| | - Yuemin Wang
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| | - Christof Wöll
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| |
Collapse
|
4
|
Gashnikova D, Maurer F, Sauter E, Bernart S, Jelic J, Dolcet P, Maliakkal CB, Wang Y, Wöll C, Studt F, Kübel C, Casapu M, Grunwaldt JD. Highly Active Oxidation Catalysts through Confining Pd Clusters on CeO 2 Nano-Islands. Angew Chem Int Ed Engl 2024; 63:e202408511. [PMID: 38877822 DOI: 10.1002/anie.202408511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
CeO2-supported noble metal clusters are attractive catalytic materials for several applications. However, their atomic dispersion under oxidizing reaction conditions often leads to catalyst deactivation. In this study, the noble metal cluster formation threshold is rationally adjusted by using a mixed CeO2-Al2O3 support. The preferential location of Pd on CeO2 islands leads to a high local surface noble metal concentration and promotes the in situ formation of small Pd clusters at a rather low noble metal loading (0.5 wt %), which are shown to be the active species for CO conversion at low temperatures. As elucidated by complementary in situ/operando techniques, the spatial separation of CeO2 islands on Al2O3 confines the mobility of Pd, preventing the full redispersion or the formation of larger noble metal particles and maintaining a high CO oxidation activity at low temperatures. In a broader perspective, this approach to more efficiently use the noble metal can be transferred to further systems and reactions in heterogeneous catalysis.
Collapse
Affiliation(s)
- Daria Gashnikova
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Eric Sauter
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sarah Bernart
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jelena Jelic
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Paolo Dolcet
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
- Current address: Department of Chemical Sciences, University of Padova, via Francesco Marzolo 1, 35131, Padova, Italy
| | - Carina B Maliakkal
- Institute of Nanotechnology (INT) and, Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT) and, Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Materials Research, Technical University Darmstadt (TUDa), Peter-Grünberg-Straße 2, 64287, Darmstadt, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Zhang K, Li G, Zou C, Chen S, Li S, Han ZK, Jiang Y, Yuan W, Yang H, Ganduglia-Pirovano MV, Wang Y. A CeO 2 (100) surface reconstruction unveiled by in situ STEM and particle swarm optimization techniques. SCIENCE ADVANCES 2024; 10:eadn7904. [PMID: 39121220 PMCID: PMC11313848 DOI: 10.1126/sciadv.adn7904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
The reconstruction of the polar CeO2 (100) surface has been a subject of long-standing debates due to its complexity and the limited availability of experimental data. Herein, we successfully reveal a CeO2 (100)-(4 × 6) surface reconstruction by combining in situ spherical aberration-corrected scanning transmission electron microscopy, density functional theory calculations, and a particle swarm optimization-based algorithm for structure searching. We have further elucidated the stabilizing mechanism of the reconstructed structure, which involves the splitting of the filled Ce(4f) states and the mixing of the lower-lying ones with the O(2p) orbitals, as evidenced by the projected density of states. We also reveal that the surface chemisorption properties toward water molecules, an important step in numerous heterogeneous catalytic reactions, are enhanced. These insights into the distinct properties of ceria surface pave the way for performance improvements of ceria in a wide range of applications.
Collapse
Affiliation(s)
- Kai Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 239556900, Saudi Arabia
| | - Chen Zou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhong-Kang Han
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Jiang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | | | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Chakarova KK, Mihaylov MY, Karapenchev BS, Koleva IZ, Vayssilov GN, Aleksandrov HA, Hadjiivanov KI. N 2 as an Efficient IR Probe Molecule for the Investigation of Ceria-Containing Materials. Molecules 2024; 29:3608. [PMID: 39125011 PMCID: PMC11314509 DOI: 10.3390/molecules29153608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Ceria and ceria-based catalysts are very important in redox and acid-base catalysis. Nanoceria have also been found to be important in biomedical applications. To design efficient materials, it is necessary to thoroughly understand the surface chemistry of ceria, and one of the techniques that provides such information about the surface is the vibrational spectroscopy of probe molecules. Although the most commonly used probe is CO, it has some disadvantages when applied to ceria and ceria-based catalysts. CO can easily reduce the material, forming carbonate-like species, and can be disproportionate, thus modifying the surface. Here, we offer a pioneering study of the adsorption of 15N2 at 100 K, demonstrating that dinitrogen can be more advantageous than CO when studying ceria-based materials. As an inert gas, N2 is not able to oxidize or reduce cerium cations and does not form any surface anionic species able to modify the surface. It is infrared and transparent, and thus there is no need to subtract the gas phase spectrum, something that often increases the noise level. Being a weaker base than CO, N2 has a negligible induction effect. By using stoichiometric nano-shaped ceria samples, we concluded that 15N2 can distinguish between surface Ce4+ sites on different, low index planes; with cations on the {110} facets and on some of the edges, Ce4+-15N2 species with IR bands at 2258-2257 cm-1 are formed. Bridging species, where one of the N atoms from the molecule interacts with two Ce4+ cations, are formed on the {100} facets (2253-2252 cm-1), while the interaction with the {111} facets is very weak and does not lead to the formation of measurable amounts of complexes. All species are formed by electrostatic interaction and disappear during evacuation at 100 K. In addition, N2 provides more accurate information than CO on the acidity of the different OH groups because it does not change the binding mode of the hydroxyls.
Collapse
Affiliation(s)
- Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
| | - Bayan S. Karapenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (I.Z.K.); (G.N.V.)
| | - Iskra Z. Koleva
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (I.Z.K.); (G.N.V.)
| | - Georgi N. Vayssilov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (I.Z.K.); (G.N.V.)
| | - Hristiyan A. Aleksandrov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (I.Z.K.); (G.N.V.)
| | - Konstantin I. Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
| |
Collapse
|
7
|
Wong J, Onizhuk M, Nagura J, Thind AS, Bindra JK, Wicker C, Grant GD, Zhang Y, Niklas J, Poluektov OG, Klie RF, Zhang J, Galli G, Heremans FJ, Awschalom DD, Alivisatos AP. Coherent Erbium Spin Defects in Colloidal Nanocrystal Hosts. ACS NANO 2024; 18:19110-19123. [PMID: 38980975 DOI: 10.1021/acsnano.4c04083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We demonstrate nearly a microsecond of spin coherence in Er3+ ions doped in cerium dioxide nanocrystal hosts, despite a large gyromagnetic ratio and nanometric proximity of the spin defect to the nanocrystal surface. The long spin coherence is enabled by reducing the dopant density below the instantaneous diffusion limit in a nuclear spin-free host material, reaching the limit of a single erbium spin defect per nanocrystal. We observe a large Orbach energy in a highly symmetric cubic site, further protecting the coherence in a qubit that would otherwise rapidly decohere. Spatially correlated electron spectroscopy measurements reveal the presence of Ce3+ at the nanocrystal surface, which likely acts as extraneous paramagnetic spin noise. Even with these factors, defect-embedded nanocrystal hosts show tremendous promise for quantum sensing and quantum communication applications, with multiple avenues, including core-shell fabrication, redox tuning of oxygen vacancies, and organic surfactant modification, available to further enhance their spin coherence and functionality in the future.
Collapse
Affiliation(s)
- Joeson Wong
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mykyta Onizhuk
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jonah Nagura
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Arashdeep Singh Thind
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Jasleen K Bindra
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Christina Wicker
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory D Grant
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuxuan Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Robert F Klie
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Jiefei Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Giulia Galli
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - F Joseph Heremans
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David D Awschalom
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - A Paul Alivisatos
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Chen S, Pleßow PN, Yu Z, Sauter E, Caulfield L, Nefedov A, Studt F, Wang Y, Wöll C. Structure and Chemical Reactivity of Y-Stabilized ZrO 2 Surfaces: Importance for the Water-Gas Shift Reaction. Angew Chem Int Ed Engl 2024; 63:e202404775. [PMID: 38758087 DOI: 10.1002/anie.202404775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
The surface structure and chemical properties of Y-stabilized zirconia (YSZ) have been subjects of intense debate over the past three decades. However, a thorough understanding of chemical processes occurring at YSZ powders faces significant challenges due to the absence of reliable reference data acquired for well-controlled model systems. Here, we present results from polarization-resolved infrared reflection absorption spectroscopy (IRRAS) obtained for differently oriented, Y-doped ZrO2 single-crystal surfaces after exposure to CO and D2O. The IRRAS data reveal that the polar YSZ(100) surface undergoes reconstruction, characterized by an unusual, red-shifted CO band at 2132 cm-1. Density functional theory calculations allowed to relate this unexpected observation to under-coordinated Zr4+ cations in the vicinity of doping-induced O vacancies. This reconstruction leads to a strongly increased chemical reactivity and water spontaneously dissociates on YSZ(100). The latter, which is an important requirement for catalysing the water-gas-shift (WGS) reaction, is absent for YSZ(111), where only associative adsorption was observed. Together with a novel analysis Scheme these reference data allowed for an operando characterisation of YSZ powders using DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy). These findings facilitate rational design and tuning of YSZ-based powder materials for catalytic applications, in particular CO oxidation and the WGS reaction.
Collapse
Affiliation(s)
- Shuang Chen
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Philipp N Pleßow
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Zairan Yu
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Eric Sauter
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Lachlan Caulfield
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexei Nefedov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ICTP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131, Karlsruhe, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Moxon S, Symington AR, Tse JS, Flitcroft JM, Skelton JM, Gillie LJ, Cooke DJ, Parker SC, Molinari M. Composition-dependent morphologies of CeO 2 nanoparticles in the presence of Co-adsorbed H 2O and CO 2: a density functional theory study. NANOSCALE 2024; 16:11232-11249. [PMID: 38779821 DOI: 10.1039/d4nr01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Catalytic activity is affected by surface morphology, and specific surfaces display greater activity than others. A key challenge is to define synthetic strategies to enhance the expression of more active surfaces and to maintain their stability during the lifespan of the catalyst. In this work, we outline an ab initio approach, based on density functional theory, to predict surface composition and particle morphology as a function of environmental conditions, and we apply this to CeO2 nanoparticles in the presence of co-adsorbed H2O and CO2 as an industrially relevant test case. We find that dissociative adsorption of both molecules is generally the most favourable, and that the presence of H2O can stabilise co-adsorbed CO2. We show that changes in adsorption strength with temperature and adsorbate partial pressure lead to significant changes in surface stability, and in particular that co-adsorption of H2O and CO2 stabilizes the {100} and {110} surfaces over the {111} surface. Based on the changes in surface free energy induced by the adsorbed species, we predict that cuboidal nanoparticles are favoured in the presence of co-adsorbed H2O and CO2, suggesting that cuboidal particles should experience a lower thermodynamic driving force to reconstruct and thus be more stable as catalysts for processes involving these species.
Collapse
Affiliation(s)
- Samuel Moxon
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Adam R Symington
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Joshua S Tse
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Joseph M Flitcroft
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan M Skelton
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Lisa J Gillie
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - David J Cooke
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Stephen C Parker
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Marco Molinari
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
10
|
Weyel J, Hess C. Refining the mechanism of CO 2 and H 2 activation over gold-ceria catalysts by IR modulation excitation spectroscopy. Phys Chem Chem Phys 2024; 26:6608-6615. [PMID: 38333955 DOI: 10.1039/d3cp05102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The activation and utilization of the greenhouse gas CO2 is of great interest for the energy transition as a fossil-free carbon source for mitigating climate change. CO2 hydrogenation via the reverse water-gas shift reaction (RWGSR) converts CO2 to CO, a crucial component of syngas, enabling further transformation by means of the Fischer-Tropsch process. In this study, we unravel the detailed mechanism of the RWGSR on low-loaded Au/CeO2 catalysts using IR modulation excitation spectroscopy (MES), by periodically modulating the concentration of the reactants, followed by phase-sensitive detection (PSD). Applying such a MES-PSD approach to Au/CeO2 catalysts during RWGSR gives direct spectroscopic evidence for the active role of gold hydride, bidentate carbonate and hydroxyl species in the reaction mechanism, while disproving the participation of other species such as formate. Our results highlight the potential of modulation excitation spectroscopy combined with phase-sensitive detection to provide new mechanistic insight into catalytic reactions not accessible by steady-state techniques, including a profound understanding of the sequence of reaction steps.
Collapse
Affiliation(s)
- Jakob Weyel
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| | - Christian Hess
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| |
Collapse
|
11
|
Zhang L, Niu Y, Pu Y, Wang Y, Dong S, Liu Y, Zhang B, Liu ZW. In Situ Visualization and Mechanistic Understandings on Facet-Dependent Atomic Redispersion of Platinum on CeO 2. NANO LETTERS 2023; 23:11999-12005. [PMID: 38100577 DOI: 10.1021/acs.nanolett.3c04008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Redispersion is an effective method for regeneration of sintered metal-supported catalysts. However, the ambiguous mechanistic understanding hinders the delicate controlling of active metals at the atomic level. Herein, the redispersion mechanism of atomically dispersed Pt on CeO2 is revealed and manipulated by in situ techniques combining well-designed model catalysts. Pt nanoparticles (NPs) sintered on CeO2 nano-octahedra under reduction and oxidation conditions, while redispersed on CeO2 nanocubes above ∼500 °C in an oxidizing atmosphere. The dynamic shrinkage and disappearance of Pt NPs on CeO2 (100) facets was directly visualized by in situ TEM. The generated atomically dispersed Pt with the square-planar [PtO4]2+ structure on CeO2 (100) facets was also confirmed by combining Cs-corrected STEM and spectroscopy techniques. The redispersion and atomic control were ascribed to the high mobility of PtO2 at high temperatures and its strong binding with square-planar O4 sites over CeO2 (100). These understandings are important for the regulation of atomically dispersed platinum catalysts.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shaoming Dong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
12
|
Fu C, Li F, Wu Z, Xiong F, Zhu J, Gong XQ, Huang W. Traces of Potassium Induce Restructuring of the Anatase TiO 2(001)-(1×4) Surface from a Reactive to an Inert Structure. J Phys Chem Lett 2023; 14:8916-8921. [PMID: 37768115 DOI: 10.1021/acs.jpclett.3c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Reconstruction of solid surfaces is generally accompanied by changes in surface activities. Here, via a combined experimental and theoretical study, we successfully identified that a trace amount of potassium dopant restructures the mineral anatase TiO2(001) single-crystal surface from an added molecule (ADM) termination to an added oxygen (AOM) one without changing the (1×4) periodicity. The anatase TiO2(001)-(1×4)-ADM surface terminated with 4-fold coordinated Ti4c and 2-fold coordinated O2c sites is (photo)catalytically active, whereas the anatase TiO2(001)-(1×4)-AOM surface terminated with O2c and inaccessible 5-fold coordinated Ti5c sites is inert. These results unveiled a mechanism of dopant-induced transformation from a reactive to an inert TiO2(001)-(1×4) surface, which unifies the existing arguments about the surface structures and (photo)catalytic activity of anatase TiO2(001)-(1×4).
Collapse
Affiliation(s)
- Cong Fu
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zongfang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Feng Xiong
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Zhang Z, Tian J, Lu Y, Yang S, Jiang D, Huang W, Li Y, Hong J, Hoffman AS, Bare SR, Engelhard MH, Datye AK, Wang Y. Memory-dictated dynamics of single-atom Pt on CeO 2 for CO oxidation. Nat Commun 2023; 14:2664. [PMID: 37160890 PMCID: PMC10169862 DOI: 10.1038/s41467-023-37776-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
Single atoms of platinum group metals on CeO2 represent a potential approach to lower precious metal requirements for automobile exhaust treatment catalysts. Here we show the dynamic evolution of two types of single-atom Pt (Pt1) on CeO2, i.e., adsorbed Pt1 in Pt/CeO2 and square planar Pt1 in PtATCeO2, fabricated at 500 °C and by atom-trapping method at 800 °C, respectively. Adsorbed Pt1 in Pt/CeO2 is mobile with the in situ formation of few-atom Pt clusters during CO oxidation, contributing to high reactivity with near-zero reaction order in CO. In contrast, square planar Pt1 in PtATCeO2 is strongly anchored to the support during CO oxidation leading to relatively low reactivity with a positive reaction order in CO. Reduction of both Pt/CeO2 and PtATCeO2 in CO transforms Pt1 to Pt nanoparticles. However, both catalysts retain the memory of their initial Pt1 state after reoxidative treatments, which illustrates the importance of the initial single-atom structure in practical applications.
Collapse
Affiliation(s)
- Zihao Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Jinshu Tian
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yubing Lu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85257, USA
| | - Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Weixin Huang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Yixiao Li
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Jiyun Hong
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Mark H Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Abhaya K Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
14
|
Gao J, Yang JW, Ma T, Wang J, Xia D, Du B, Cui Y, Yang C. Mechanism study on direct synthesis of glycerol carbonate from CO2 and glycerol over shaped CeO2 model catalysts. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
15
|
Li Z, Chen L, Wu Z, Jia A, Shi S, Zhang H, Wang J, Liu Z, Shao WP, Yang F, Wu XP, Gong XQ, Huang W. Surface Oxygen Vacancy and Hydride Species on Ceria Are Detrimental to Acetylene Semihydrogenation Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Zhaorui Li
- Key Laboratory of Precise and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zongfang Wu
- Hefei National Research Center for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
| | - AiPing Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Shucheng Shi
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jia Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi Liu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Wei-Peng Shao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Fan Yang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weixin Huang
- Key Laboratory of Precise and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
16
|
Zhang Y, Jia A, Li Z, Yuan Z, Huang W. Titania-Morphology-Dependent Pt–TiO 2 Interfacial Catalysis in Water-Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yunshang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Aiping Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Zhaorui Li
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Zhenxuan Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Weixin Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
17
|
Su HS, Chang X, Xu B. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Vecchietti J, Pérez-Bailac P, Lustemberg PG, Fornero EL, Pascual L, Bosco MV, Martínez-Arias A, Ganduglia-Pirovano MV, Bonivardi AL. Shape-Controlled Pathways in the Hydrogen Production from Ethanol Steam Reforming over Ceria Nanoparticles. ACS Catal 2022; 12:10482-10498. [PMID: 36033370 PMCID: PMC9396663 DOI: 10.1021/acscatal.2c02117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Indexed: 11/29/2022]
Abstract
![]()
The ethanol surface reaction over CeO2 nanooctahedra
(NO) and nanocubes (NC), which mainly expose (111) and (100) surfaces,
respectively, was studied by means of infrared spectroscopy (TPSR-IR),
mass spectrometry (TPSR-MS), and density functional theory (DFT) calculations.
TPSR-MS results show that the production of H2 is 2.4 times
higher on CeO2-NC than on CeO2-NO, which is
rationalized starting from the different types of adsorbed ethoxy
species controlled by the shape of the ceria particles. Over the CeO2(111) surface, monodentate type I and II ethoxy species with
the alkyl chain perpendicular or parallel to the surface, respectively,
were identified. Meanwhile, on the CeO2(100) surface, bidentate
and monodentate type III ethoxy species on the checkerboard O-terminated
surface and on a pyramid of the reconstructed (100) surface, respectively,
are found. The more labile surface ethoxy species on each ceria nanoshape,
which are the monodentate type I or III ethoxy on CeO2-NO
and CeO2-NC, respectively, react on the surface to give
acetate species that decompose to CO2 and CH4, while H2 is formed via the recombination of hydroxyl
species. In addition, the more stable monodentate type II and bidentate
ethoxy species on CeO2-NO and CeO2-NC, respectively,
give an ethylenedioxy intermediate, the binding of which is facet-dependent.
On the (111) facet, the less strongly bound ethylenedioxy desorbs
as ethylene, whereas on the (100) facet, the more strongly bound intermediate
also produces CO2 and H2 via formate species.
Thus, on the (100) facet, an additional pathway toward H2 formation is found. ESR activity measurements show an enhanced H2 production on the nanocubes.
Collapse
Affiliation(s)
- Julia Vecchietti
- Instituto de Desarrollo Tecnológico para la Industria Química, UNL-CONICET, Güemes 3450, 3000 Santa Fe, Argentina
| | - Patricia Pérez-Bailac
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
- PhD Programme in Applied Chemistry, Doctoral School, Universidad Autónoma de Madrid, C/Francisco Tomas y Valiente 2, 28049 Madrid, Spain
| | - Pablo G. Lustemberg
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
- Instituto de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, 2000EZP Rosario, Santa Fe, Argentina
| | - Esteban L. Fornero
- Instituto de Desarrollo Tecnológico para la Industria Química, UNL-CONICET, Güemes 3450, 3000 Santa Fe, Argentina
| | - Laura Pascual
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | - Marta V. Bosco
- Instituto de Desarrollo Tecnológico para la Industria Química, UNL-CONICET, Güemes 3450, 3000 Santa Fe, Argentina
| | - Arturo Martínez-Arias
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| | | | - Adrian L. Bonivardi
- Instituto de Desarrollo Tecnológico para la Industria Química, UNL-CONICET, Güemes 3450, 3000 Santa Fe, Argentina
- Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, 3000 Santa Fe, Argentina
| |
Collapse
|
19
|
Jiang D, Yao Y, Li T, Wan G, Pereira‐Hernández XI, Lu Y, Tian J, Khivantsev K, Engelhard MH, Sun C, García‐Vargas CE, Hoffman AS, Bare SR, Datye AK, Hu L, Wang Y. Tailoring the Local Environment of Platinum in Single‐Atom Pt
1
/CeO
2
Catalysts for Robust Low‐Temperature CO Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Yonggang Yao
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
- Current address: State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Tangyuan Li
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
| | - Gang Wan
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Xavier Isidro Pereira‐Hernández
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Yubing Lu
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Jinshu Tian
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Konstantin Khivantsev
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Mark H. Engelhard
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Chengjun Sun
- X-ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
| | - Carlos E. García‐Vargas
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Adam S. Hoffman
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials University of New Mexico Albuquerque NM 87131 USA
| | - Liangbing Hu
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| |
Collapse
|
20
|
Pérez-Bailac P, Lustemberg PG, Ganduglia-Pirovano MV. Facet-dependent stability of near-surface oxygen vacancies and excess charge localization at CeO 2surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:504003. [PMID: 34479232 DOI: 10.1088/1361-648x/ac238b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 05/25/2023]
Abstract
To study the dependence of the relative stability of surface (VA) and subsurface (VB) oxygen vacancies with the crystal facet of CeO2, the reduced (100), (110) and (111) surfaces, with two different concentrations of vacancies, were investigated by means of density functional theory (DFT + U) calculations. The results show that the trend in the near-surface vacancy formation energies for comparable vacancy spacings, i.e. (110) < (100) < (111), does not follow the one in the surface stability of the facets, i.e. (111) < (110) < (100). The results also reveal that the preference of vacancies for surface or subsurface sites, as well as the preferred location of the associated Ce3+polarons, are facet- and concentration-dependent. At the higher vacancy concentration, theVAis more stable than theVBat the (110) facet whereas at the (111), it is the other way around, and at the (100) facet, both theVAand theVBhave similar stability. The stability of theVAvacancies, compared to that of theVB, is accentuated as the concentration decreases. Nearest neighbor polarons to the vacant sites are only observed for the less densely packed (110) and (100) facets. These findings are rationalized in terms of the packing density of the facets, the lattice relaxation effects induced by vacancy formation and the localization of the excess charge, as well as the repulsive Ce3+-Ce3+interactions.
Collapse
Affiliation(s)
- Patricia Pérez-Bailac
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/Marie Curie 2, 28049 Madrid, Spain
- PhD Programme in Applied Chemistry, Doctoral School, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 2, 28049 Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Pablo G Lustemberg
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/Marie Curie 2, 28049 Madrid, Spain
- Instituto de Física Rosario (IFIR-CONICET), Ocampo y Esmeralda, S2000EKF Rosario, Santa Fe, Argentina
| | | |
Collapse
|
21
|
Yu WZ, Wu MY, Wang WW, Jia CJ. In Situ Generation of the Surface Oxygen Vacancies in a Copper-Ceria Catalyst for the Water-Gas Shift Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10499-10509. [PMID: 34435787 DOI: 10.1021/acs.langmuir.1c01428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dissociation of H2O is a crucial aspect for the water-gas shift reaction, which often occurs on the vacancies of a reducible oxide support. However, the vacancies sometimes run off, thus inhibiting H2O dissociation. After high-temperature treatment, the ceria supports were lacking vacancies because of sintering. Unexpectedly, the in situ generation of surface oxygen vacancies was observed, ensuring the efficient dissociation of H2O. Due to the surface reconstruction of ceria nanorods, the copper species sustained were highly dispersed on the sintered support, on which CO was adsorbed efficiently to react with hydroxyls from H2O dissociation. In contrast, no surface reconstruction occurred in ceria nanoparticles, leading to the sintering of copper species. The sintered copper species were averse to adsorb CO, so the copper-ceria nanoparticle catalyst had poor reactivity even when surface oxygen vacancies could be generated in situ.
Collapse
Affiliation(s)
- Wen-Zhu Yu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mei-Yao Wu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
22
|
Jiang D, Yao Y, Li T, Wan G, Pereira-Hernández XI, Lu Y, Tian J, Khivantsev K, Engelhard MH, Sun C, García-Vargas CE, Hoffman AS, Bare SR, Datye AK, Hu L, Wang Y. Tailoring the Local Environment of Platinum in Single-Atom Pt 1 /CeO 2 Catalysts for Robust Low-Temperature CO Oxidation. Angew Chem Int Ed Engl 2021; 60:26054-26062. [PMID: 34346155 DOI: 10.1002/anie.202108585] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/09/2022]
Abstract
A single-atom Pt1 /CeO2 catalyst formed by atom trapping (AT, 800 °C in air) shows excellent thermal stability but is inactive for CO oxidation at low temperatures owing to over-stabilization of Pt2+ in a highly symmetric square-planar Pt1 O4 coordination environment. Reductive activation to form Pt nanoparticles (NPs) results in enhanced activity; however, the NPs are easily oxidized, leading to drastic activity loss. Herein we show that tailoring the local environment of isolated Pt2+ by thermal-shock (TS) synthesis leads to a highly active and thermally stable Pt1 /CeO2 catalyst. Ultrafast shockwaves (>1200 °C) in an inert atmosphere induced surface reconstruction of CeO2 to generate Pt single atoms in an asymmetric Pt1 O4 configuration. Owing to this unique coordination, Pt1 δ+ in a partially reduced state dynamically evolves during CO oxidation, resulting in exceptional low-temperature performance. CO oxidation reactivity on the Pt1 /CeO2 _TS catalyst was retained under oxidizing conditions.
Collapse
Affiliation(s)
- Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA.,Current address: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Wan
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Xavier Isidro Pereira-Hernández
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Yubing Lu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jinshu Tian
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Konstantin Khivantsev
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark H Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chengjun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Carlos E García-Vargas
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Abhaya K Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
23
|
Zhao Y, Jalal A, Uzun A. Interplay between Copper Nanoparticle Size and Oxygen Vacancy on Mg-Doped Ceria Controls Partial Hydrogenation Performance and Stability. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuxin Zhao
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ahsan Jalal
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri
Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
24
|
Maleki F, Pacchioni G. Steric and Orbital Effects Induced by Isovalent Dopants on the Surface Chemistry of ZrO2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Farahnaz Maleki
- Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
25
|
Lustemberg PG, Plessow PN, Wang Y, Yang C, Nefedov A, Studt F, Wöll C, Ganduglia-Pirovano MV. Vibrational Frequencies of Cerium-Oxide-Bound CO: A Challenge for Conventional DFT Methods. PHYSICAL REVIEW LETTERS 2020; 125:256101. [PMID: 33416353 DOI: 10.1103/physrevlett.125.256101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
In ceria-based catalysis, the shape of the catalyst particle, which determines the exposed crystal facets, profoundly affects its reactivity. The vibrational frequency of adsorbed carbon monoxide (CO) can be used as a sensitive probe to identify the exposed surface facets, provided reference data on well-defined single crystal surfaces together with a definitive theoretical assignment exist. We investigate the adsorption of CO on the CeO_{2}(110) and (111) surfaces and show that the commonly applied DFT(PBE)+U method does not provide reliable CO vibrational frequencies by comparing with state-of-the-art infrared spectroscopy experiments for monocrystalline CeO_{2} surfaces. Good agreement requires the hybrid DFT approach with the HSE06 functional. The failure of conventional density-functional theory (DFT) is explained in terms of its inability to accurately describe the facet- and configuration-specific donation and backdonation effects that control the changes in the C─O bond length upon CO adsorption and the CO force constant. Our findings thus provide a theoretical basis for the detailed interpretation of experiments and open up the path to characterize more complex scenarios, including oxygen vacancies and metal adatoms.
Collapse
Affiliation(s)
- Pablo G Lustemberg
- Institute of Physics Rosario, IFIR, National Scientific and Technical Research Council, CONICET, and National University of Rosario, UNR, S2000EKF Rosario, Santa Fe, Argentina
- Institute of Catalysis and Petrochemistry, ICP, Spanish National Research Council, CSIC, 28049 Madrid, Spain
| | - Philipp N Plessow
- Institute of Catalysis Research and Technology, IKFT, Karlsruhe Institute of Technology, KIT, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute for Chemical Technology and Polymer Chemistry, ITCP, Karlsruhe Institute of Technology, KIT, Karlsruhe 76131, Germany
| | - Chengwu Yang
- Institute for Chemical Technology and Polymer Chemistry, ITCP, Karlsruhe Institute of Technology, KIT, Karlsruhe 76131, Germany
| | - Alexei Nefedov
- Institute for Chemical Technology and Polymer Chemistry, ITCP, Karlsruhe Institute of Technology, KIT, Karlsruhe 76131, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, IKFT, Karlsruhe Institute of Technology, KIT, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, ITCP, Karlsruhe Institute of Technology, KIT, Karlsruhe 76131, Germany
| | - Christof Wöll
- Institute of Functional Interfaces, IFG, Karlsruhe Institute of Technology, KIT, 76344 Eggenstein-Leopoldshafen, Germany
| | | |
Collapse
|