1
|
Liu S, Hao Y, Sun M, Ren J, Li S, Wu Y, Sun Q, Hao Y. SnSe 2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non-radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402385. [PMID: 38742952 DOI: 10.1002/smll.202402385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Non-radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non-radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm.
Collapse
Affiliation(s)
- Shaoting Liu
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Yang Hao
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Mengxue Sun
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Jingkun Ren
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Shiqi Li
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Yukun Wu
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Qinjun Sun
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Yuying Hao
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| |
Collapse
|
2
|
Choi MS, Bang G, Lee J, Kim I, Bang J, Lee SY, Lee K, Lee KH. Acceleration of NO 2 gas sensitivity in two-dimensional SnSe 2 by Br doping. Dalton Trans 2023; 52:3386-3390. [PMID: 36811336 DOI: 10.1039/d2dt03784j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The authors report a Br doping effect on the NO2 gas sensing properties of a two-dimensional (2D) SnSe2 semiconductor. Single crystalline 2D SnSe2 samples with different Br contents are grown by a simple melt-solidification method. By analyzing the structural, vibrational as well as electrical properties, it can be confirmed that the Br impurity substitutes on the Se-site in SnSe2 serving as an efficient electron donor. When we measure the change of resistance under a 20 ppm NO2 gas flow condition at room temperature, both responsivity and response time are drastically improved by Br doping from 1.02% and 23 s to 3.38% and 15 s, respectively. From these results, it can be concluded that Br doping plays a key role for encouraging the charge transfer efficiency from the SnSe2 surface to the NO2 molecule by elaborating Fermi level in 2D SnSe2.
Collapse
Affiliation(s)
- Myung Sik Choi
- School of Nano & Materials Science and Engineering, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Geukchan Bang
- Department of Physics, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Jeongmin Lee
- Department of Physics, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Inseo Kim
- Department of Physics, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Joonho Bang
- School of Materials Science & Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Yong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea. .,KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Kimoon Lee
- Department of Physics, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Chen C, Zhang W, Duan P, Liu W, Shafi M, Hu X, Zhang C, Zhang C, Man B, Liu M. SERS enhancement induced by the Se vacancy defects in ultra-thin hybrid phase SnSe x nanosheets. OPTICS EXPRESS 2022; 30:37795-37814. [PMID: 36258361 DOI: 10.1364/oe.473965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Improving the photo-induced charge transfer (PICT) efficiency by adjusting the energy levels difference between adsorbed probe molecules and substrate materials is a key factor for boosting the surface enhanced Raman scattering (SERS) based on the chemical mechanism (CM). Herein, a new route to improve the SERS activity of two-dimensional (2D) selenium and tin compounds (SnSex, 1 ≤ x ≤ 2) by the hybrid phase materials is researched. The physical properties and the energy band structure of SnSex were analyzed. The enhanced SERS activity of 2D SnSex can be attribute to the coupling of the PICT resonance caused by the defect energy levels induced by Se vacancy and the molecular resonance Raman scattering (RRS). This established a relationship between the physical properties and SERS activity of 2D layered materials. The resonance probe molecule, rhodamine (R6G), which is used to detect the SERS performance of SnSex nanosheets. The enhancement factor (EF) of R6G on the optimized SnSe1.35 nanosheets can be as high as 2.6 × 106, with a detection limit of 10-10 M. The SERS result of the environmental pollution, thiram, shows that the SnSex nanosheets have a practical application in trace SERS detection, without the participation of metal particles. These results demonstrate that, through hybrid phase materials, the SERS sensitivity of 2D layered nanomaterials can be improved. It provides a kind of foreground non-metal SERS substrate in monitoring or detecting and provide a deep insight into the chemical SERS mechanism based on 2D layered materials.
Collapse
|
4
|
Saikia S, Devi R, Gogoi P, Saikia L, Choudary BM, Raja T, Deka P, Deka RC. Regioselective Friedel-Crafts Acylation Reaction Using Single Crystalline and Ultrathin Nanosheet Assembly of Scrutinyite-SnO 2. ACS OMEGA 2022; 7:32225-32237. [PMID: 36120068 PMCID: PMC9476169 DOI: 10.1021/acsomega.2c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Peculiar physicochemical properties of two-dimensional (2D) nanomaterials have attracted research interest in developing new synthetic technology and exploring their potential applications in the field of catalysis. Moreover, ultrathin metal oxide nanosheets with atomic thickness exhibit abnormal surficial properties because of the unique 2D confinement effect. In this work, we present a facile and general approach for the synthesis of single crystalline and ultrathin 2D nanosheets assembly of scrutinyite-SnO2 through a simple solvothermal method. The structural and compositional characterization using X-ray diffraction (Rietveld refinement analysis), high-resolution transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and so on reveal that the as-synthesized 2D nanosheets are ultrathin and single crystallized in the scrutinyite-SnO2 phase with high purity. The ultrathin SnO2 nanosheets show predominant growth in the [011] direction on the main surface having a thickness of ca. 1.3 nm. The SnO2 nanosheets are further employed for the regioselective Friedel-Crafts acylation to synthesize aromatic ketones that have potential significance in chemical industry as synthetic intermediates of pharmaceuticals and fine chemicals. A series of aromatic substrates acylated over the SnO2 nanosheets have afforded the corresponding aromatic ketones with up to 92% yield under solvent-free conditions. Comprehensive catalytic investigations display the SnO2 nanosheet assembly as a better catalytic material compared to the heterogeneous metal oxide catalysts used so far in the view of its activity and reusability in solvent-free reaction conditions.
Collapse
Affiliation(s)
- Sudakhina Saikia
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Rasna Devi
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Pranjal Gogoi
- Catalysis
and Inorganic Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Lakshi Saikia
- Materials
Sciences and Technology Division, CSIR-North
East Institute of Science and Technology, Jorhat 785006, India
| | | | - Thirumalaiswamy Raja
- Catalysis
and Inorganic Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Pangkita Deka
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
- Department
of Chemistry, Jorhat Engineering College, Garmur, Jorhat 785007, India
| | - Ramesh C. Deka
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| |
Collapse
|
5
|
Paolucci V, De Santis J, Ricci V, Lozzi L, Giorgi G, Cantalini C. Bidimensional Engineered Amorphous a-SnO 2 Interfaces: Synthesis and Gas Sensing Response to H 2S and Humidity. ACS Sens 2022; 7:2058-2068. [PMID: 35757893 PMCID: PMC9315963 DOI: 10.1021/acssensors.2c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) and metal chalcogenides (MCs), despite their excellent gas sensing properties, are subjected to spontaneous oxidation in ambient air, negatively affecting the sensor's signal reproducibility in the long run. Taking advantage of spontaneous oxidation, we synthesized fully amorphous a-SnO2 2D flakes (≈30 nm thick) by annealing in air 2D SnSe2 for two weeks at temperatures below the crystallization temperature of SnO2 (T < 280 °C). These engineered a-SnO2 interfaces, preserving all the precursor's 2D surface-to-volume features, are stable in dry/wet air up to 250 °C, with excellent baseline and sensor's signal reproducibility to H2S (400 ppb to 1.5 ppm) and humidity (10-80% relative humidity (RH)) at 100 °C for one year. Specifically, by combined density functional theory and ab initio molecular dynamics, we demonstrated that H2S and H2O compete by dissociative chemisorption over the same a-SnO2 adsorption sites, disclosing the humidity cross-response to H2S sensing. Tests confirmed that humidity decreases the baseline resistance, hampers the H2S sensor's signal (i.e., relative response (RR) = Ra/Rg), and increases the limit of detection (LOD). At 1 ppm, the H2S sensor's signal decreases from an RR of 2.4 ± 0.1 at 0% RH to 1.9 ± 0.1 at 80% RH, while the LOD increases from 210 to 380 ppb. Utilizing a suitable thermal treatment, here, we report an amorphization procedure that can be easily extended to a large variety of TMDs and MCs, opening extraordinary applications for 2D layered amorphous metal oxide gas sensors.
Collapse
Affiliation(s)
- Valentina Paolucci
- Department of Industrial and Information Engineering and Economics, University of L'Aquila and UdR INSTM of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Jessica De Santis
- Department of Industrial and Information Engineering and Economics, University of L'Aquila and UdR INSTM of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Vittorio Ricci
- Department of Industrial and Information Engineering and Economics, University of L'Aquila and UdR INSTM of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Luca Lozzi
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy
| | - Giacomo Giorgi
- Department of Civil & Environmental Engineering (DICA), Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy.,CNR-SCITEC, 06123 Perugia, Italy
| | - Carlo Cantalini
- Department of Industrial and Information Engineering and Economics, University of L'Aquila and UdR INSTM of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| |
Collapse
|
6
|
Jin S, Wu D, Song W, Hao H, Gao W, Yan S. Superior acetone sensor based on hetero-interface of SnSe 2/SnO 2 quasi core shell nanoparticles for previewing diabetes. J Colloid Interface Sci 2022; 621:119-130. [PMID: 35452926 DOI: 10.1016/j.jcis.2022.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
To improve gas sensing performance of SnO2 sensor, a heterostructure constructed by SnO2 and SnSe2 is designed and synthesized via hydrothermal method and post thermal oxidation treatment. The obtained SnSe2/SnO2 composite nanoparticles demonstrate a special core-shell structure with SnO2 nanograins distributed in the shell and mixed SnSe2 and SnO2 nanograins in the core. Owning to the promoted charge transfer effect invited by SnSe2, the sensor based on SnSe2/SnO2 composite nanoparticles exhibit expressively enhanced acetone sensing performance compared to the pristine SnO2 sensor. At the working temperature of 300 °C, the SnSe2/SnO2 composite sensor with optimized composition exhibits superior sensing property towards acetone, including high response (10.77-100 ppm), low theoretical limit of detection (0.354 ppm), high selectivity and good reproducibility. Moreover, the sensor shows a satisfactory sensing performance in trace acetone gas detection under high humidity condition (relative humidity: 70-90%), making it a promising candidate to constructing exhaled breath sensors for acetone detection.
Collapse
Affiliation(s)
- Shicheng Jin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- Dalian Scientific Test and Control Technology Institute, Dalian 116001, China
| | - Weinan Song
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenyuan Gao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Yan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Sierra-Castillo A, Haye E, Acosta S, Arenal R, Bittencourt C, Colomer JF. Atmospheric pressure chemical vapor deposition growth of vertically aligned SnS 2 and SnSe 2 nanosheets. RSC Adv 2021; 11:36483-36493. [PMID: 35494379 PMCID: PMC9043430 DOI: 10.1039/d1ra05672g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Laminated metal dichalcogenides are candidates for different potential applications ranging from catalysis to nanoelectronics. However, efforts are still needed to optimize synthesis methods aiming to control the number of layers, morphology, and crystallinity, parameters that govern the properties of the synthesized materials. Another important parameter is the thickness and the length of the samples with the possibility of large-scale growth of target homogeneous materials. Here, we report a chemical vapor deposition method at atmospheric pressure to produce vertically aligned tin dichalcogenide based-materials. Tin disulfide (SnS2) and tin diselenide (SnSe2) vertically aligned nanosheets have been synthesized and characterized by different methods showing their crystallinity and purity. Homogenous crystalline 2H-phase SnS2 nanosheets with high purity were synthesized with vertical orientation on substrates; sulfur vacancies were observed at the edges of the sheets. Similarly, in the crystalline 2H phase SnSe2 nanosheets selenium vacancies were observed at the edges. Moreover, these nanosheets are larger than the SnS2 nanosheets, show lower nanosheet homogeneity on substrates and contamination with selenium atoms from the synthesis was observed. The synthesized nanomaterials are interesting in various applications where the edge accessibility and/or directionality of the nanosheets play a major role as for example in gas sensing or field emission.
Collapse
Affiliation(s)
- Ayrton Sierra-Castillo
- Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur 5000 Namur Belgium
| | - Emile Haye
- Laboratoire d'Analyse par Réactions Nucléaires (LARN), Namur Institute of Structured Matter (NISM), University of Namur 5000 Namur Belgium
| | - Selene Acosta
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons 7000 Mons Belgium
| | - Raul Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza 50018 Zaragoza Spain
- ARAID Foundation 50018 Zaragoza Spain
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons 7000 Mons Belgium
| | - Jean-François Colomer
- Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur 5000 Namur Belgium
| |
Collapse
|
8
|
Wang T, Wang Y, Zheng S, Sun Q, Wu R, Hao J. Design of hierarchical SnSe 2 for efficient detection of trace NO 2 at room temperature. CrystEngComm 2021. [DOI: 10.1039/d1ce00804h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosheet-assembled hierarchical SnSe2 could serve as a new suitable candidate for high-performance room-temperature NO2 gas sensing.
Collapse
Affiliation(s)
- Tingting Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - You Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shengliang Zheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Quan Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruozhen Wu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|