1
|
Jiang M, Zhu M, Ding J, Wang H, Yu Q, Chen X, He Y, Wang M, Luo X, Wu C, Zhang L, Yao X, Wang H, Li X, Liao X, Jiang Z, Jin Z. Nanocluster-agminated amorphous cobalt nanofilms for highly selective electroreduction of nitrate to ammonia. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134909. [PMID: 38905979 DOI: 10.1016/j.jhazmat.2024.134909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Developing highly-efficient electrocatalysts for the nitrate reduction reaction (NITRR) is a persistent challenge. Here, we present the successful synthesis of 14 amorphous/low crystallinity metal nanofilms on three-dimensional carbon fibers (M-NFs/CP), including Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, In, Sn, Pb, Au, or Bi, using rapid thermal evaporation. Among these samples, our study identifies the amorphous Co nanofilm with fine agglomerated Co clusters as the optimal electrocatalyst for NITRR in a neutral medium. The resulting Co-NFs/CP exhibits a remarkable Faradaic efficiency (FENH3) of 91.15 % at - 0.9 V vs RHE, surpassing commercial Co foil (39 %) and Co powder (20 %), despite sharing the same metal composition. Furthermore, during the electrochemical NITRR, the key intermediates on the surface of the Co-NFs/CP catalyst were detected by in situ Fourier-transform infrared (FTIR) spectroscopy, and the possible reaction ways were probed by Density functional theory (DFT) calculations. Theoretical calculations illustrate that the abundant low-coordinate Co atoms of Co-NFs/CP could enhances the adsorption of *NO3 intermediates compared to crystalline Co. Additionally, the amorphous Co structure lowers the energy barrier for the rate-determining step (*NH2→*NH3). This work opens a new avenue for the controllable synthesis of amorphous/low crystallinity metal nano-catalysts for various electrocatalysis reaction applications.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junjie Ding
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qianchuan Yu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xi Chen
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xinghui Yao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Huizhen Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China; School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Research Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
2
|
Kim M, Biswas S, Barraza Alvarez I, Christopher P, Wong BM, Mangolini L. Nonthermal Plasma Activation of Adsorbates: The Case of CO on Pt. JACS AU 2024; 4:2979-2988. [PMID: 39211584 PMCID: PMC11350585 DOI: 10.1021/jacsau.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Nonthermal plasmas provide a unique approach to electrically driven heterogeneous catalytic processes. Despite much interest from the community, fundamental activation pathways in these processes remain poorly understood. Here, we investigate how exposure to a nonthermal plasma sustained in an argon nonreactive atmosphere affects the desorption of carbon monoxide (CO) from platinum nanoparticles. Temperature-programmed desorption measurements indicate that the plasma reduces the effective binding energy (BE) of CO to Pt surfaces by as much as ∼0.3 eV, with the reduction in the BE scaling linearly with the plasma density. We find that the effective CO BE is most strongly reduced for under-coordinated sites (steps and edges) compared to well-coordinated sites (terraces). Density functional theory calculations suggest that this is due to plasma-induced charging and electric fields at the catalyst surface, which preferentially affect under-coordinated sites. This study provides direct experimental evidence of plasma-induced nonthermal activation of the adsorbate-catalyst couple.
Collapse
Affiliation(s)
- Minseok Kim
- Department
of Mechanical Engineering, University of
California, Riverside, Riverside, California 92521, United States
| | - Sohag Biswas
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Isabel Barraza Alvarez
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93117, United States
| | - Bryan M. Wong
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Lorenzo Mangolini
- Department
of Mechanical Engineering, University of
California, Riverside, Riverside, California 92521, United States
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
3
|
Li J, Xiong Q, Mu X, Li L. Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies. CHEMSUSCHEM 2024; 17:e202301775. [PMID: 38469618 DOI: 10.1002/cssc.202301775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Ammonia, a pivotal chemical feedstock and a potential hydrogen energy carrier, demands efficient synthesis as a key step in its utilization. The traditional Haber-Bosch process, known for its high energy consumption, has spurred researchers to seek ammonia synthesis under milder conditions. Advances in surface science and characterization technologies have deepened our understanding of the microscopic reaction mechanisms of ammonia synthesis. This article concentrates on gas-solid phase ammonia synthesis, initially exploring the latest breakthroughs and improvements in thermal catalytic synthesis. Building on this, it especially focuses on emerging external field-driven alternatives, such as photocatalysis, photothermal catalysis, and low-temperature plasma catalysis strategies. The paper concludes by discussing the future prospects and objectives of nitrogen fixation technologies. This comprehensive review is intended to provide profound insights for overcoming the inherent thermodynamic and kinetic constraints in traditional ammonia synthesis, thereby fostering a shift towards "green ammonia" production and significantly reducing the energy footprint.
Collapse
Affiliation(s)
- Jiayang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Qingchuan Xiong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Xiaowei Mu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, 130022, Changchun, P. R. China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| |
Collapse
|
4
|
Michiels R, Gerrits N, Neyts E, Bogaerts A. Plasma Catalysis Modeling: How Ideal Is Atomic Hydrogen for Eley-Rideal? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11196-11209. [PMID: 39015417 PMCID: PMC11247482 DOI: 10.1021/acs.jpcc.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Plasma catalysis is an emerging technology, but a lot of questions about the underlying surface mechanisms remain unanswered. One of these questions is how important Eley-Rideal (ER) reactions are, next to Langmuir-Hinshelwood reactions. Most plasma catalysis kinetic models predict ER reactions to be important and sometimes even vital for the surface chemistry. In this work, we take a critical look at how ER reactions involving H radicals are incorporated in kinetic models describing CO2 hydrogenation and NH3 synthesis. To this end, we construct potential energy surface (PES) intersections, similar to elbow plots constructed for dissociative chemisorption. The results of the PES intersections are in agreement with ab initio molecular dynamics (AIMD) findings in literature while being computationally much cheaper. We find that, for the reactions studied here, adsorption is more probable than a reaction via the hot atom (HA) mechanism, which in turn is more probable than a reaction via the ER mechanism. We also conclude that kinetic models of plasma-catalytic systems tend to overestimate the importance of ER reactions. Furthermore, as opposed to what is often assumed in kinetic models, the choice of catalyst will influence the ER reaction probability. Overall, the description of ER reactions is too much "ideal" in models. Based on our findings, we make a number of recommendations on how to incorporate ER reactions in kinetic models to avoid overestimation of their importance.
Collapse
Affiliation(s)
- Roel Michiels
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| | - Nick Gerrits
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Erik Neyts
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| | - Annemie Bogaerts
- Research
group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk,Antwerp BE-2610, Belgium
| |
Collapse
|
5
|
Lefferts L. Leveraging Expertise in Thermal Catalysis to Understand Plasma Catalysis. Angew Chem Int Ed Engl 2024; 63:e202305322. [PMID: 38279548 DOI: 10.1002/anie.202305322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Indexed: 01/28/2024]
Abstract
Best practices in testing heterogeneous catalysts are translated to plasma-catalytic experiments. Independent determination of plasma-catalytic and plasma-chemical contributions is essential. Non-porous catalyst particles are preferred because active sites inside sub-micron pores cannot contribute. Temperature variation is needed to determine kinetics, despite the complexity of thermal effects in plasma. Rigorous checks on catalyst deactivation and mass balance are needed. Plasma enhanced reversed reactions should be minimized by keeping conversion low and far from thermodynamic equilibrium, preventing underestimation of the rate of forward reaction. In contrast, plasma-catalytic studies often aim at conversions surpassing thermodynamic equilibrium, not obtaining any information on kinetics. Calculation of catalyst activity per active sites (turn-over-frequency) requires also appropriate characterization to determine the number of active sites. The relationship between kinetics and thermodynamics for plasma-catalysis is discussed using endothermic decomposition of CO2 and exothermic synthesis of ammonia from N2 and H2 as examples. Assuming Langmuir-Hinshelwood and Eley-Rideal mechanisms, the effect of excitation of reactant molecules on activation barriers and surface coverages are discussed, influencing reaction rates. The consequences of reversed reactions are considered. Plasma-catalysis with catalysts applied for thermal catalysis at much higher temperature should be avoided, as adsorbed species are bonded too strongly resulting in low rates.
Collapse
Affiliation(s)
- Leon Lefferts
- Catalytic Processes & Materials, MESA+ Institute, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| |
Collapse
|
6
|
Bayer BN, Bruggeman PJ, Bhan A. Species, Pathways, and Timescales for NH 3 Formation by Low-Temperature Atmospheric Pressure Plasma Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brian N. Bayer
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, University of Minnesota Twin Cities, 111 Church St. SE, Minneapolis, Minnesota55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota55455, United States
| |
Collapse
|
7
|
Chen S, Wang Y, Li Q, Li K, Li M, Wang F. A DFT study of plasma-catalytic ammonia synthesis: the effect of electric fields, excess electrons and catalyst surfaces on N 2 dissociation. Phys Chem Chem Phys 2023; 25:3920-3929. [PMID: 36648094 DOI: 10.1039/d2cp05052h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plasma catalytic synthesis of ammonia has the advantages of flexible on-off and environmental friendliness, making ammonia a potential vector for renewable energy storage. The synergistic interaction between plasmas and catalyst surfaces remains unclear. In this work, we develop a quantum chemical model based on density functional theory where the plasma environment is simplified. The effect of electric fields and surface electrons on N2 adsorption and dissociation is studied on the typical catalysts (Ru and Ni) with different surface morphologies. The combined effect of the electric fields and excess electrons will promote the adsorption of N2 and the weakening of the NN triple bond. It is shown that the electron distribution on the surface is optimized, and the electrostatic interaction between surface atoms and adsorbates is strengthened. The marginal effect has been observed, and the promotion effect on the catalysts with better performance in thermal-catalytic N2 dissociation is weaker.
Collapse
Affiliation(s)
- She Chen
- College of Electrical and Information Engineering, Hunan University, 410082, Changsha, People's Republic of China.
| | - Yulei Wang
- College of Electrical and Information Engineering, Hunan University, 410082, Changsha, People's Republic of China. .,State Grid Zhejiang Provincial Electric Power Co., Ltd. Taizhou Power Supply Company, 318000, Taizhou, People's Republic of China
| | - Qihang Li
- College of Electrical and Information Engineering, Hunan University, 410082, Changsha, People's Republic of China.
| | - Kelin Li
- College of Electrical and Information Engineering, Hunan University, 410082, Changsha, People's Republic of China.
| | - Mengbo Li
- College of Electrical and Information Engineering, Hunan University, 410082, Changsha, People's Republic of China.
| | - Feng Wang
- College of Electrical and Information Engineering, Hunan University, 410082, Changsha, People's Republic of China.
| |
Collapse
|
8
|
Yan C, Waitt C, Akintola I, Lee G, Easa J, Clarke R, Geng F, Poirier D, Otor HO, Rivera-Castro G, Go DB, O’Brien CP, Hicks JC, Schneider WF, Ma H. Recent Advances in Plasma Catalysis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Yan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Craig Waitt
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ibukunoluwa Akintola
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Garam Lee
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Justin Easa
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Russell Clarke
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Feiyang Geng
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Deanna Poirier
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hope O. Otor
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gerardo Rivera-Castro
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David B. Go
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Casey P. O’Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jason C. Hicks
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hanyu Ma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Kumar A, Reddy SN. Hydrothermal treatment of metal impregnated biomass for the generation of H 2 and nanometal carbon hybrids. ENVIRONMENTAL RESEARCH 2022; 205:112536. [PMID: 34896086 DOI: 10.1016/j.envres.2021.112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The nanocatalyst impregnation onto the biomass matrix has gained importance in enhancing the H2 yield and overcoming the catalyst deactivation problems. In-situ catalytic gasification of Ru/Fe-impregnated sugarcane bagasse and citrus limetta (mosambi peels) were examined and compared with their raw biomass at subcritical and supercritical water conditions. Bagasse having a higher amount of lignocellulosic content produces a maximum yield of H2 over moambi peels. Besides, Ru and Fe nano-metal carbon hybrids with crystalline sizes between 10 and 25 nm were formed during in-situ hydrothermal gasification. The performance of hydrothermal gasification based on hydrogen yield was studied, and it relatively follows the order as temperature, nanoparticle composed, metal loading onto biomass matrix, type of catalyst, and biomass used. At the maximum operating temperature of 600 °C, B: W ratio 1:10 for the resident time of 60 min, highest H2 yield of 12.75 ± 0.17 and 11.20 ± 0.13 mmol/g attained for Ru and Fe impregnated bagasse with the CGE of 72.28 ± 2.17% and 67.08 ± 1.97% respectively. At similar operating conditions, H2 yields of 8.75 ± 0.18 and 8.13 ± 0.16 mmol/g were achieved with the CGE of 62.4 ± 1.91% and 53.7 ± 1.66% for Ru and Fe impregnated mosambi peels, respectively. Based on the H2 and CH4 production, Ru shows the highest performance than Fe catalyst.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Sivamohan N Reddy
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| |
Collapse
|
10
|
Luna-Valenzuela A, Cabellos JL, Posada-Amarillas A. Effect of temperature on the structure of Pd8 and Pd7Au1 clusters: an Ab initio molecular dynamics approach. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02771-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Rouwenhorst KHR, Burbach HGB, Vogel DW, Núñez Paulí J, Geerdink B, Lefferts L. Plasma-catalytic ammonia synthesis beyond thermal equilibrium on Ru-based catalysts in non-thermal plasma. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02189j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The barrier for N2 dissociation on Ru can be decreased by plasma-activation, or the barrier can be removed completely by the formation of N radicals, resulting in NH3 formation beyond the thermal equilibrium on Ru-catalysts.
Collapse
Affiliation(s)
- Kevin H. R. Rouwenhorst
- Catalytic Processes & Materials
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Hugo G. B. Burbach
- Catalytic Processes & Materials
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | | | - Judit Núñez Paulí
- Catalytic Processes & Materials
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Bert Geerdink
- Catalytic Processes & Materials
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Leon Lefferts
- Catalytic Processes & Materials
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|