1
|
Saa L, Núñez-Martínez M, Carpintero-Cueto E, Cortajarena AL. Biomolecular ligands as tools to modulate the optical and chiroptical properties of gold nanoclusters. NANOSCALE 2025. [PMID: 39749401 DOI: 10.1039/d4nr04267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Biomolecule-stabilized gold nanoclusters (AuNCs) have become functional nanomaterials of interest because of their unique optical properties, together with excellent biocompatibility and stability under biological conditions. In this review, we explore the recent advancements in the application of biomolecular ligands for synthesizing AuNCs. Various synthesis approaches that are employing amino acids, peptides, proteins, and DNA as biomolecular scaffolds are reviewed. Furthermore, the influence of the synthesis conditions and nature of the biomolecule on the emerging optical (absorption and photoluminescence) and chiroptical properties of AuNCs is discussed. Finally, the latest research on the applications of biomolecule-stabilized AuNCs for biosensing, bioimaging, and theranostics is presented.
Collapse
Affiliation(s)
- Laura Saa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
| | - Manuel Núñez-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
| | - Eva Carpintero-Cueto
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
- University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
- Ikerbasque. Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
2
|
Li S, Ma Q, Wang C, Yang K, Hong Z, Chen Q, Song J, Song X, Yang H. Near-Infrared II Gold Nanocluster Assemblies with Improved Luminescence and Biofate for In Vivo Ratiometric Imaging of H 2S. Anal Chem 2022; 94:2641-2647. [PMID: 35085437 DOI: 10.1021/acs.analchem.1c05154] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrasmall gold nanoclusters (AuNCs) are emerging as promising luminescent nanoprobes for bioimaging due to their fantastic photoluminescence (PL) and renal-clearable ability. However, it remains a great challenge to design them for in vivo sensitive molecular imaging in desired tissues. Herein, we have developed a strategy to tailor the PL and biofate of near-infrared II (NIR-II)-emitting AuNCs via ligand anchoring for improved bioimaging. By optimizing the ligand types in AuNCs and using Er3+-doped lanthanide (Ln) nanoparticles as models, core-satellite Ln@AuNCs assemblies were rationally constructed, which enabled 2.5-fold PL enhancement of AuNCs at 1100 nm and prolonged blood circulation compared to AuNCs. Significantly, Ln@AuNCs with dual intense NIR-II PL (from AuNCs and Er3+) can effectively accumulate in the liver for ratiometric NIR-II imaging of H2S, facilitated by H2S-mediated selective PL quenching of AuNCs. We have then demonstrated the real-time imaging evaluation of liver delivery efficacy and dynamics of two H2S prodrugs. This shows a paradigm to visualize liver H2S delivery and its prodrug screening in vivo. Note that Ln@AuNCs are body-clearable via the hepatobiliary excretion pathway, thus reducing potential long-term toxicity. Such findings may propel the engineering of AuNC nanoprobes for advancing in vivo bioimaging analysis.
Collapse
Affiliation(s)
- Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
| | - Qiuping Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Kaidong Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhongzhu Hong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.,Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|