1
|
Acharjee D, Mahato AB, Panda MK, Ghosh S. Non-convergence of the blinking timescale of twelve-faceted perovskite nanocrystals observed through an advanced fluorescence correlation spectroscopy study. Phys Chem Chem Phys 2025; 27:824-833. [PMID: 39660423 DOI: 10.1039/d4cp03787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Single-particle photoluminescence measurements have been extensively utilized to investigate the charge carrier dynamics in quantum dots (QDs). Among these techniques, single dot blinking studies are effective for probing relatively slower processes with timescales >10 ms, whereas fluorescence correlation spectroscopy (FCS) studies are suited for recording faster processes with timescales typically <1 ms. In this study, we utilized scanning FCS (sFCS) to bridge the ms gap, thereby enabling the tracking of carrier dynamics across an extended temporal window ranging from μs to subsecond. We compared the sFCS data recorded on surface-immobilized twelve-faceted CsPbBr3 dodecahedron perovskite nanocrystals (d-PNCs) with the FCS data of the same nanocrystals in the solution phase. Although the two datasets exhibited similarities in a qualitative sense, they revealed notable quantitative differences. This is primarily attributed to the significantly varying immediate environments of PNCs in these two techniques, as well as the different temporal sizes of the observation windows available for the recording of carrier dynamics. The most intriguing finding of our study lies in the non-converging blinking timescale (τR) of d-PNCs in sFCS, despite this technique providing an extended temporal window size (≤328 ms) for studying carrier dynamics. We attribute this observation to PL blinking following power-law statistics, which causes the mean ON/OFF duration of blinking persuasive to the experimental integration time, making blinking occur across all timescales.
Collapse
Affiliation(s)
- Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Asit Baran Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| |
Collapse
|
2
|
Sen A, Dutta A, Bose AL, Sen P. Oleylammonium fluoride passivated blue-emitting 2D CsPbBr 3 nanoplates with near-unity photoluminescence quantum yield: safeguarding against threats from external perturbations. Chem Sci 2025; 16:735-752. [PMID: 39629488 PMCID: PMC11610764 DOI: 10.1039/d4sc05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Quantum-confined, two-dimensional (2D) CsPbBr3 (CPB) nanoplates (NPLs) have emerged as exceptional candidates for next-generation blue LEDs and display technology applications. However, their large surface-to-volume ratio and detrimental bromide vacancies adversely affect their photoluminescence quantum yield (PLQY). Additionally, external perturbations such as heat, light exposure, moisture, oxygen, and solvent polarity accelerate their transformation into three-dimensional (3D), green-emitting CPB nanocrystals (NCs), thereby resulting in the loss of their quantum confinement. Until now, no reported strategies have successfully addressed all these issues simultaneously. In this study, for the first time, we prepared oleylammonium fluoride (OAmF) salt and applied it post-synthetically to CPB NPLs with thicknesses of n = 3 and n = 4. Steady state and time-resolved photoluminescence (TRPL) measurements like fluorescence upconversion and TCSPC confirmed the elimination of detrimental deep trap states by fluoride ions, resulting in an unprecedented improvement in PLQY to 85% for n = 3 and 98% for n = 4. Furthermore, the formation of robust Pb-F bonds, coupled with strong electrostatic and hydrogen-bonding interactions, resulted in a highly stable NPL surface-ligand interaction. This concrete surface architecture restricts the undesired phase transition of 2D NPLs into 3D NCs under various external perturbations, including heat up to 363 K, strong UV irradiation, water, atmospheric conditions, and solvent polarity. Also, the temperature dependent TRPL measurements provide an insight into the charge carrier dynamics under thermal stress conditions and reveal the location of shallow trap states, which lie below 7 meV from the conduction band edge. In brief, our innovative OAmF salt has effectively addressed all the critical issues of 2D CPB NPLs, paving the way for next-generation LED applications. This breakthrough not only enhances the stability and PLQY of CPB NPLs but also offers a scalable solution for the advancement of perovskite-based technologies.
Collapse
Affiliation(s)
- Arghya Sen
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| | - Abhijit Dutta
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| | - Abir Lal Bose
- Department of Chemical Engineering, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur - 208 016 UP India +91 512 259 6806 +91 512 259 6312
| |
Collapse
|
3
|
Acharjee D, Panda MK, Mahato AB, Das A, Ghosh S. Evidence of carrier diffusion between emission states in CdSe/ZnS core-shell quantum dots: a comprehensive investigation combining fluorescence lifetime correlation spectroscopy (FLCS) and single dot photoluminescence studies. NANOSCALE 2024; 16:18444-18454. [PMID: 39263802 DOI: 10.1039/d4nr02221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Investigation of carrier dynamics in CdSe/ZnS core-shell quantum dots (QDs) is performed using fluorescence-lifetime-correlation-spectroscopy (FLCS) and single-dot PL blinking studies. The origin of an emitted photon from a QD in an FLCS study is assigned to either an exciton state or trap state based on its excited state lifetime (τfl). Subsequently, two intrastate autocorrelation functions (ACFs) representing the exciton and trap states and one cross-correlation function (CCF) coupling these two states are constructed. Interestingly, the timescales of carrier diffusion (τR) show striking similarities across all three correlation functions, which further correlate with τR of the conventional FCS. However, ACFs notably deviate from the CCF in their μs progression patterns, with the latter showing growth, whereas the former ones display decay. This implies inter-state carrier diffusions leading to the QD blinking. Further study of single particle PL blinking on a surface-immobilized QD indicates shallow trap states near the band edge cause the blinking at low excitation power, while trion recombination becomes an additional contributing factor at higher pump power. Overall, the results highlight not only an excellent correlation between these two techniques but also the potential of our approach for achieving an accurate and comprehensive understanding of carrier dynamics in CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Asit Baran Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India.
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| |
Collapse
|
4
|
Chatterjee S, Biswas S, Sourav S, Rath J, Akhil S, Mishra N. Strategies To Achieve Long-Term Stability in Lead Halide Perovskite Nanocrystals and Its Optoelectronic Applications. J Phys Chem Lett 2024; 15:10118-10137. [PMID: 39332015 DOI: 10.1021/acs.jpclett.4c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The lead halide perovskite (LHP) nanocrystals (NCs) research area is flourishing due to their exceptional properties and great potential for a wide range of applications in optoelectronics and photovoltaics. Yet, despite the momentum in the field, perovskite devices are not yet ready for commercialization due to degradation caused by intrinsic phase transitions and external factors such as moisture, temperature, and ultraviolet (UV) light. To attain long-term stability, we analyze the origin of instabilities and describe different strategies such as surface modification, encapsulation, and doping for long-term viability. We also assess how these stabilizing strategies have been utilized to obtain optoelectronic devices with long-term stability. This Mini-Review also outlines the future direction of each strategy for producing highly efficient and ultrastable LHP NCs for sustainable applications.
Collapse
Affiliation(s)
- Shovon Chatterjee
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Subarna Biswas
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Smruti Sourav
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Jyotisman Rath
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Syed Akhil
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Nimai Mishra
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| |
Collapse
|
5
|
Vinçon I, Barfüßer A, Feldmann J, Akkerman QA. Quantum Dot Metal Salt Interactions Unraveled by the Sphere of Action Model. J Am Chem Soc 2023. [PMID: 37267531 DOI: 10.1021/jacs.3c03582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Postsynthetic metal salt treatments are frequently employed in the luminescence enhancement of quantum dots (QDs); however, its microscopic picture remains unclear. CsPbBr3-QDs, featuring strong excitonic absorption and high photoluminescence (PL) quantum yield, are ideal QDs to unravel the intricate interaction between QDs and such surface-bound metal salts. Herein, we study this interaction based on the controlled PL quenching of CsPbBr3-QDs with BiBr3. Upon the addition of BiBr3, an instant and complete PL quenching is observed, which can be fully recovered after the addition of an excess of PbBr2. This, together with the complete preservation of the excitonic absorption suggests a surface-driven adsorption equilibrium. Additionally, time-resolved studies reveal a non-homogeneous surface trap formation. Based on the so-called sphere of action model for the adsorption process, we show that already a single BiBr3 adsorption suffices to completely quench a QD's luminescence. This approach is expanded to analyze size-, ligand-, and metal-dependent quenching dynamics. Facet junctions are identified as regions of enhanced surface reactivity. A Langmuir-type ligand coverage is exposed with a strong impact on adsorption. Our results provide a detailed mechanistic insight into postsynthetic interaction of QDs with metal salts, opening pathways for future surface manipulations.
Collapse
Affiliation(s)
- Ilka Vinçon
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Anja Barfüßer
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Quinten A Akkerman
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| |
Collapse
|
6
|
Tawil C, Kurdi RE, Patra D. Cesium Lead Bromide Perovskites: Synthesis, Stability, and Photoluminescence Quantum Yield Enhancement by Hexadecyltrimethylammonium Bromide Doping. ACS OMEGA 2022; 7:20872-20880. [PMID: 35755361 PMCID: PMC9219059 DOI: 10.1021/acsomega.2c01490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Perovskite nanoparticles having a crystalline structure have attracted scientists' attention due to their great potential in optoelectronic and scintillation applications. The photoluminescence quantum yield (PLQY) is one of the main critical photophysical properties of the perovskite nanoparticles. Unfortunately, the main limitation of cesium lead halide perovskites is their instability in an ambient atmosphere, where they undergo a rapid chemical decomposition within time. For this purpose, hexadecyltrimethylammonium bromide (CTAB) was used as a surfactant dopant to test in the first place its effect on the stability of CsPbBr3 perovskites and on the PLQY values of the prepared perovskites. The addition of CTAB has proven its efficiency in the formed CsPbBr3 nanoparticles by increasing their thermal stability and by enhancing their PLQY up to 75%. These results were obtained after the successful preparation of CsPbBr3 perovskite nanoparticles by optimizing three different reaction parameters, starting from the time of the reaction, moving to the concentration of lead bromide, and ending with the concentration of cesium oleate. Therefore, it was found that the most stable CsPbBr3 perovskites were formed when mixing 0.15 g of lead bromide heated for 40 min with a volume of 1.2 mL of cesium oleate.
Collapse
|
7
|
Das A, Mishra K, Ghosh S. Revealing Explicit Microsecond Carrier Diffusion from One Emission Center to Another in an All-Inorganic Perovskite Nanocrystal. J Phys Chem Lett 2021; 12:5413-5422. [PMID: 34080871 DOI: 10.1021/acs.jpclett.1c01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Blinking of freely diffusing CsPbBr3 nanocrystals (NCs) is studied using fluorescence lifetime correlation spectroscopy (FLCS). Emitted photons from each NCs are assigned to an emission state (exciton or trap) based on their lifetime. Subsequently, an intrastate autocorrelation function (ACF) and an interstate cross-correlation function (CCF) are constructed. Fitting of the AFCs with an analytical model shows that, at low excitation power, the microsecond blinking timescale of the exciton state matches well with that of the trap state. Most interestingly, both of those timescales further correlate with the microsecond growth timescale of the CCF. The strong anti-correlation of the CCF along with the stretched exponential nature of the blinking kinetics confirms the involvement of carrier diffusion and dispersive trap states in NC blinking. At high excitation power, enhanced sample heterogeneity causes a more dispersive blinking. To the best of our knowledge, this is the first report of a NC blinking study using a single-molecule-based FLCS technique.
Collapse
Affiliation(s)
- Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Krishna Mishra
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| |
Collapse
|